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ABSTRACT

In numerous signal processing and machine learning applications, the problem of signal recovery

from a limited number of nonlinear observations is of special interest.

These problems also called inverse problem have recently received attention in signal process-

ing, machine learning, and high-dimensional statistics. In high-dimensional setting, the inverse

problems are inherently ill-posed as the number of measurements is typically less than the number

of dimensions. As a result, one needs to assume some structures on the underlying signal such as

sparsity, structured sparsity, low-rank and so on. In addition, having a nonlinear map from the

signal space to the measurement space may add more challenges to the problem. For instance, the

assumption on the nonlinear function such as known/unknown, invertibility, smoothness, even/odd,

and so on can change the tractability of the problem dramatically. The nonlinear inverse problems

are also a special interest in the context of neural network and deep learning as each layer can be

cast as an instance of the inverse problem. As a result, understanding of an inverse problem can

serve as a building block for more general and complex networks. In this thesis, we study various

aspects of such inverse problems with focusing on the underlying signal structure, the compression

modes, the nonlinear map from signal space to measurement space, and the connection of the in-

verse problems to the analysis of some class of neural networks. In this regard, we try to answer

statistical properties and computational limits of the proposed methods, and compare them to the

state-of-the-art approaches.

First, we start with the superposition signal model in which the underlying signal is assumed to

be the superposition of two components with sparse representation (i.e., their support is arbitrary

sparse) in some specific domains. Initially, we assume that the nonlinear function also called link

function is not known. Then, the goal is defined as recovering the components of the superposition

signal from the nonlinear observation model. This problem which is called signal demixing is of
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special importance in several applications ranging from astronomy to computer vision. Our first

contribution is a simple, fast algorithm that recovers the component signals from the nonlinear

measurements. We support our algorithm with rigorous theoretical analysis and provide upper

bounds on the estimation error as well as the sample complexity of demixing the components (up

to a scalar ambiguity). Next, we remove the assumption on the link function and studied the

same problem when the link function is known and monotonic, but the observation is corrupted by

some additive noise. We proposed an algorithm under this setup for recovery of the components

of the superposition signal, and derive nearly-tight upper bounds on the sample complexity of the

algorithm to achieve stable recovery of the components. Moreover, we showed that the algorithm

enjoys a linear convergence rate. Chapter 1 includes this part.

In chapter 2, we target two assumptions made in the first chapter: the first assumption which

is concerned about the underlying signal model considers the case that the constituent components

have arbitrary sparse representations in some incoherent domains. While having arbitrary sparse

support can be a good way of modeling of many natural signals, it is just a simple and not realistic

assumption. Many real signals such as natural images show some specific structure on their support.

That is, when they are represented in a specific domain, their support comprises non-zero coefficients

which are grouped or classified in a specific pattern. For instance, it is well-known that many

natural images show so-called tree sparsity structure when they are represented in the wavelet

domains. This motivates us to study other signal models in the context of our demixing problem

introduced in chapter 1. In particular, we study certain families of structured sparsity models

in the constituent components and propose a method which provably recovers the components

given (nearly) O(s) samples where s denotes the sparsity level of the underlying components. This

strictly improves upon previous nonlinear demixing techniques and asymptotically matches the

best possible sample complexity. The second assumption we made in the first chapter is about

having a smooth monotonic nonlinear map for the case of known link function. In chapter 2, we

go beyond this assumption, and we study the bigger class of nonlinear link functions and consider

the demixing problem from a limited number of nonlinear observations where this nonlinearity is
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due to either periodic function or aperiodic one. For both of these considerations, we propose new

robust algorithms and equip them with statistical analysis.

In chapter 3, we continue our investigation about choosing a proper underlying signal model in

the demixing framework. In the first two chapters, our methods for modeling the underlying signals

were based on a hard-coded approach. That is, we assume some prior knowledge in the signal domain

and exploit the structure of this prior in designing efficient algorithms. However, many real signals

including natural images have a more complicated structure than just simple sparsity (arbitrary

or structured). Towards choosing a proper structure, some research directions try to automate the

process of choosing prior knowledge on the underlying signal by learning them through a lot of

training samples. Given the success of deep learning for approximating the distribution of complex

signals, in chapter 3, we apply deep learning techniques to model the low-dimension structure of the

constituent components and consequently, estimating these components from their superposition.

As illustrated through extensive numerical experiments, we show that this approach is able to learn

the structure of the constituent components in our demixing problem. Our approach in this chapter

is empirical, and we defer more theoretical investigation of the proposed method as our future work.

In chapter 4, we study another low-dimension signal model. In particular, we focus on the

common low-rank matrix model as our underlying structure. In this case, our interest quantity to

estimate (recover) is a low-rank matrix. In this regard, we focus on studying of optimizing a convex

function over the set of matrices, subject to rank constraints. Recently, different algorithms have

been proposed for the low-rank matrix estimation problem. However, existing first-order methods

for solving such problems either are too slow to converge, or require multiple invocations of singular

value decompositions.

On the other hand, factorization-based non-convex algorithms, while being much faster, and

has a provable guarantee, require stringent assumptions on the condition number of the optimum.

Here, we provide a novel algorithmic framework that achieves the best of both worlds: as fast as

factorization methods, while requiring no dependency on the condition number. We instantiate

our general framework for three important and practical applications; nonlinear affine rank min-
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imization (NLARM), Logistic PCA, and precision matrix estimation (PME) in the probabilistic

graphical model. We then derive explicit bounds on the sample complexity as well as the running

time of our approach and show that it achieves the best possible bounds for both cases. We also

provide an extensive range of experimental results for all of these applications.

Finally, we extend our understanding of nonlinear models to the problem of learning neural

network in chapter 5. In particular, we shift gear to study the problem of (provably) learning

the weights of a two-layer neural network with quadratic activations (sometimes called shallow

networks). Our shallow network comprises of the input layer, one hidden layer, and the output

layer with a single neuron. We focus on the under-parametrized regime where the number of

neurons in the hidden layer is (much) smaller than the dimension of the input. Our approach

uses a lifting trick, which enables us to borrow algorithmic ideas from low-rank matrix estimation

(fourth chapter). In this context, we propose three novel, non-convex training algorithms which do

not need any extra tuning parameters other than the number of hidden neurons. We support our

algorithms with rigorous theoretical analysis and show that the proposed algorithms enjoy linear

convergence, fast running time per iteration, and near-optimal sample complexity. We complement

our theoretical results with several numerical experiments.

While we have tried to be consistent in the mathematical notations throughout this thesis, each

chapter should be treated independently regarding some mathematical notation. Hence, we have

provided the notations being used in each chapter to prevent any possible confusion.
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CHAPTER 1. FAST ALGORITHMS FOR DEMIXING SPARSE SIGNALS

FROM NONLINEAR OBSERVATIONS

In this chapter, we study the problem of demixing a pair of sparse signals from nonlinear

observations of their superposition. Mathematically, we consider a nonlinear signal observation

model, yi = g(aTi x) + ei, i = 1, . . . ,m, where x = Φw + Ψz denotes the superposition signal, Φ

and Ψ are orthonormal bases in Rn, and w, z ∈ Rn are sparse coefficient vectors of the constituent

signals. In this chapter, we assume that the support of these vectors are arbitrary sparse. In the

next chapters, we will consider other structured patterns. Further, we assume that the observations

are corrupted by a subgaussian additive noise. Within this model, g represents a nonlinear link

function, and ai ∈ Rn is the i-th row of the measurement matrix, A ∈ Rm×n. Problems of this nature

arise in several applications ranging from astronomy, computer vision, and machine learning. We

make some concrete algorithmic progress for the above demixing problem. Specifically, we consider

two scenarios: (i) the case when the demixing procedure has no knowledge of the link function, and

(ii) the case when the demixing algorithm has perfect knowledge of the link function. In both cases,

we provide fast algorithms for recovery of the constituents w and z from the observations. Moreover,

we support these algorithms with a rigorous theoretical analysis, and derive (nearly) tight upper

bounds on the sample complexity of the proposed algorithms for achieving stable recovery of the

component signals. Our analysis also shows that the running time of our algorithms is essentially

as good as the best possible.

We also provide a range of numerical simulations to illustrate the performance of the proposed

algorithms on both real and synthetic signals and images. Our simulations show the superior

performance of our algorithms compared to existing methods for demixing signals and images

based on convex optimization. In particular, our proposed methods yield demonstrably better
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sample complexities as well as improved running times, thereby enabling their applicability to

large-scale problems.

1.1 Introduction

1.1.1 Setup

In numerous signal processing applications, the problem of demixing is of special interest. In

simple terms, demixing involves disentangling two (or more) constituent signals from observations

of their linear superposition. Formally, consider a discrete-time signal x ∈ Rn that can be expressed

as the superposition of two signals:

x = Φw + Ψz ,

where Φ and Ψ are orthonormal bases of Rn, and w, z ∈ Rn are the corresponding basis coeffi-

cients. The goal of signal demixing, in this context, is to reliably recover the constituent signals

(equivalently, their basis representations w and z) from the superposition signal x.

Demixing suffers from a fundamental identifiability issue since the number of unknowns (2n)

is greater than the number of observations (n). This is easy to see: suppose for simplicity that

Φ = Ψ = In, the canonical basis of Rn, and therefore, x = w + z. Now, suppose that both w

and z have only one nonzero entry in the first coordinate. Then, there is an infinite number of w

and z that are consistent with the observations x, and any hope of recovering the true components

is lost. Therefore, for the demixing problem to have an identifiable solution, one inevitably has

to assume some type of incoherence between the constituent signals (or more specifically, between

the corresponding bases Φ and Ψ) (Elad et al., 2005; Donoho et al., 2006). Such an incoherence

assumption certifies that the components are sufficiently “distinct” and that the recovery problem

is well-posed. Please see Section 1.3 for a formal definition of incoherence.

However, even if we assume that the signal components are sufficiently incoherent, demixing

poses additional challenges under stringent observation models.
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Suppose, now, that we only have access to undersampled linear measurements of the signal, i.e.,

we record:

y = Ax , (1.1)

where A ∈ Rm×n denotes the measurement operator and where m < n. In this scenario, the

demixing problem is further confounded by the fact that A possesses a nontrivial null space. In

this case, it might seem impossible to recover the components x and z since A possesses a nontrivial

null space. Once again, this problem is highly ill-posed and further structural assumptions on the

constituent signals are necessary. Under-determined problems of this kind have recently received

significant attention in signal processing, machine learning, and high-dimensional statistics. In

particular, the emergent field of compressive sensing (Candès, 2006; Donoho, 2006) shows that it

is indeed possible to exactly reconstruct the underlying signals under certain assumptions on x,

provided the measurement operator is designed carefully. This intuition has enabled the design

of a wide range of efficient architectures for signal acquisition and processing (Wakin et al., 2006;

Mishali and Eldar, 2010).

In this chapter, we address an even more challenging question in the demixing context. Math-

ematically, we consider a noisy, nonlinear signal observation model, formulated as follows:

yi = g(〈ai,Φw + Ψz〉) + ei, i = 1, . . . ,m . (1.2)

Here, as before, the superposition signal is modeled as x = Φw+Ψz. Each observation is generated

by the composition of a linear functional of the signal 〈ai, x〉, with a (scalar) nonlinear function

g. Here, g is sometimes called a link or transfer function, and ai denotes the ith row of a linear

measurement matrix A ∈ Rm×n. For full generality, in (1.2) we assume that each observation yi

is corrupted by additive noise; the noiseless case is realized by setting ei = 0. We will exclusively

consider the “measurement-poor” regime where the number of observations m is much smaller than

the ambient dimension n.

For all the reasons detailed above, the problem of recovering the coefficient vectors w and

z from the measurements y seems daunting. Therefore, we make some structural assumptions.

Particularly, we assume that w and z are s-sparse (i.e., they contain no more than s nonzero
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entries). Further, we will assume perfect knowledge of the bases Φ and Ψ, and the measurement

matrix A. The noise vector e ∈ Rm is assumed to be stochastic, zero mean, and bounded. Under

these assumptions, we will see that it is indeed possible to stably recover the coefficient vectors,

with a number of observations that is proportional to the sparsity level s, as opposed to the ambient

dimension n.

The nonlinear link function g plays a crucial role in our algorithm development and analysis.

In signal processing applications, such nonlinearities may arise due to imperfections caused during

a measurement process, or inherent limitations of the measurement system, or due to quantization

or calibration errors. We discuss such practical implications more in detail below. On an abstract

level, we consider two distinct scenarios. In the first scenario, the link function may be non-smooth,

non-invertible, or even unknown to the recovery procedure. This is the more challenging case, but

we will show that recovery of the components is possible even without knowledge of g. In the

second scenario; the link function is a known, smooth, and strictly monotonic function. This is

the somewhat simpler case, and we will see that this leads to significant improvements in recovery

performance both in terms of theory and practice.

1.1.2 Our Contributions

We specifically make some concrete algorithmic progress in the demixing problem under non-

linear observations. In particular, we study the following scenarios depending on certain additional

assumptions made on (1.2):

1. Unknown g. We first consider the (arguably, more general) scenario where the nonlinear

link function g may be non-smooth, non-invertible, or even unknown. In this setting, we do

not explicitly model the additive noise term in (1.2). For such settings, we introduce a novel

demixing algorithm that is non-iterative, does not require explicit knowledge of the link function

g, and produces an estimate of the signal components. We call this algorithm OneShot to

emphasize its non-iterative nature. It is assumed that OneShot possess oracle knowledge of

the measurement matrix A, and orthonormal bases Φ and Ψ.
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We supplement our proposed algorithm with a rigorous theoretical analysis and derive upper

bounds on the sample complexity of demixing with nonlinear observations. In particular, we

prove that the sample complexity of OneShot to achieve an estimation error κ is given by

m = O( 1
κ2
s log n

s ) provided that the entries of the measurement matrix are i.i.d. standard normal

random variables.

2. Known g. Next, we consider the case where the nonlinear link function g is known, smooth,

and monotonic. In this setting, the additive noise term in (1.2) is assumed to be bounded either

absolutely, or with high probability. For such (arguably, milder) settings, we provide an iterative

algorithm for demixing of the constituent signals in (1.2) given the nonlinear observations y. We

call this algorithm Demixing with Hard Thresholding, or DHT for short. In addition to

knowledge of g, we assume that DHT possesses oracle knowledge of A, Φ, and Ψ.

Within this scenario, we also analyze two special sub-cases:

Case 2a: Isotropic measurements. We assume that the measurement vectors ai are indepen-

dent, isotropic random vectors that are incoherent with the bases Φ and Ψ. This assumption is

more general than the i.i.d. standard normal assumption on the measurement matrix made in the

first scenario, and is applicable to a wider range of measurement models. For this case, we show

that the sample complexity of DHT is upper-bounded by m = O(s polylog n), independent of

the estimation error κ.

Case 2b: Subgaussian measurements. we assume that the rows of the matrix A are

independent subgaussian isotropic random vectors. This is also a generalization of the i.i.d.

standard normal assumption made above, but more restrictive than Case 2a. In this setting, we

obtain somewhat better sample complexity. More precisely, we show that the sample complexity

of DHT is m = O(s log n
s ) for sample complexity, matching the best known sample complexity

bounds for recovering a superposition of s-sparse signals from linear observations (Hegde and

Baraniuk, 2012b,a).
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Table 1.1: Summary of our contributions, and comparison with existing methods for the concrete

case where Φ is the identity and Ψ is the DCT basis. Here, s denotes the sparsity level of the

components, n denotes the ambient dimension, m denotes the number of samples, and κ denotes

estimation error.

Algorithms Sample complexity Running time Measurements Link function

LASSO O( s
κ2

log n
s ) poly(n) Gaussian unknown

OneShot O( s
κ2

log n
s ) O(mn) Gaussian unknown

DHT O(s polylog n) O(mn log 1
κ) Isotropic rows known

DHT O(s log n
s ) O(mn log 1

κ) Subgaussian known

In both the above cases, the underlying assumption is that the bases Φ and Ψ are sufficiently

incoherent, and that the sparsity level s is small relative to the ambient dimension n. In this

regime, we show that DHT exhibits a linear rate of convergence, and therefore the computational

complexity of DHT is only a logarithmic factor higher than OneShot. Table 1.1 provides a

summary of the above contributions for the specific case where Φ is the identity (canonical) basis

and Ψ is the discrete cosine transform (DCT) basis, and places them in the context of the existing

literature on some nonlinear recovery methods (Plan et al., 2014; Thrampoulidis et al., 2015; Plan

and Vershynin, 2016). We stress that these previous works do not explicitly consider the demixing

problem, but in principle the algorithms of (Plan et al., 2014; Thrampoulidis et al., 2015; Plan and

Vershynin, 2016) can be extended to the demixing setting as well.

1.1.3 Techniques

At a high level, our recovery algorithms are based on the now-classical method of greedy iterative

thresholding. In both methods, the idea is to first form a proxy of the signal components, followed

by hard thresholding to promote sparsity of the final estimates of the coefficient vectors w and

z. The key distinguishing factor from existing methods is that the greedy thresholding procedures

used to estimate w and z are deliberately myopic, in the sense that each thresholding step operates
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as if the other component did not exist at all. Despite this apparent shortcoming, we are still able

to derive bounds on recovery performance when the signal components are sufficiently incoherent.

Our first algorithm, OneShot, is based on the recent, pioneering approach of (Plan et al.,

2014), which describes a simple (but effective) method to estimate a high-dimensional signal from

unknown nonlinear observations. Our first main contribution of this chapter is to extend this idea

to the nonlinear demixing problem, and to precisely characterize the role of incoherence in the

recovery process. Indeed, a variation of the approach of (Plan et al., 2014) (described in Section

1.5) can be used to solve the nonlinear demixing problem as stated above, with a similar two-step

method of first forming a proxy, and then performing a convex estimation procedure (such as the

LASSO (Tibshirani, 1996)) to produce the final signal estimates. However, as we show below in our

analysis and experiments, OneShot offers superior performance to this approach. The analysis of

OneShot is based on a geometric argument, and leverages the Gaussian mean width for the set

of sparse vectors, which is a statistical measure of complexity of a set of points in a given space.

While OneShot is simple and effective, one can potentially do much better if the link function

g were available at the time of recovery. Our second algorithm, DHT, leverages precisely this

intuition. First, we formulate our nonlinear demixing problem in terms of an optimization problem

with respect to a specially-defined loss function that depends on the nonlinearity g. Next, for solving

the proposed optimization problem, we propose an iterative method to solve the optimization

problem, up to an additive approximation factor. Each iteration with DHT involves a proxy

calculation formed by computing the gradient of the loss function, followed by (myopic) projection

onto the constraint sets. Again, somewhat interestingly, this method can be shown to be linearly

convergent, and therefore only incurs a small (logarithmic) overhead in terms of running time.

The analysis of DHT is based on bounding certain parameters of the loss function known as the

restricted strong convexity (RSC) and restricted strong smoothness (RSS) constants.1

1Quantifying algorithm performance by bounding RSC and RSC constants of a given loss function are quite
widespread in the machine learning literature (Negahban et al., 2011; Bahmani et al., 2013b; Yuan et al., 2014a; Jain
et al., 2014), but have not studied in the context of signal demixing.
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Finally, we provide a wide range of simulations to verify empirically our claims both on synthetic

and real data. We first compare the performance of OneShot with the convex optimization

method of (Plan et al., 2014) for nonlinear demixing via a series of phase transition diagrams.

Our simulation results show that OneShot outperforms this convex method significantly in both

demixing efficiency as well as running time, and consequently makes it an attractive choice in

large-scale problems. However, as discussed below, the absence of knowledge of the link function

induces an inevitable scale ambiguity in the final estimation2. For situations where we know the link

function precisely, our simulation results show that DHT offers much better statistical performance

compared to OneShot, and is even able to recover the scale of the signal components explicitly. We

also provide simulation results on real-world natural images and astronomical data to demonstrate

robustness of our approaches.

1.2 Applications and Prior Art

Demixing problems of various flavors have been long studied in research areas spanning signal

processing, statistics, and physics, and we only present a small subset of relevant related work.

In particular, demixing methods have been the focus of significant research over the fifteen years,

dating back at least to (Chen et al., 1998). The work of Elad et al. (Elad et al., 2005) and Bobin

et al. (Bobin et al., 2007) posed the demixing problem as an instance of morphological components

analysis (MCA), and formalized the observation model (1.1). Specifically, these approaches posed

the recovery problem in terms of a convex optimization procedure, such as the LASSO (Tibshirani,

1996). The work of Pope et al. (Studer et al., 2012) analyzed somewhat more general conditions

under which stable demixing could be achieved.

More recently, the work of (McCoy and Tropp, 2014) showed a curious phase transition behavior

in the performance of the convex optimization methods. Specifically, they demonstrated a sharp

statistical characterization of the achievable and non-achievable parameters for which successful

demixing of the signal components can be achieved. Moreover, they extended the demixing problem

2Indeed, following the discussion in (Plan et al., 2014), any demixing algorithm that does not leverage knowledge
of g is susceptible to such a scale ambiguity.
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to a large variety of signal structures beyond sparsity via the use of general atomic norms in place

of the `1-norm in the above optimization. See (McCoy et al., 2014) for an in-depth discussion of

atomic norms, their statistical and geometric properties, and their applications to demixing.

Approaches for (linear) demixing has also considered a variety of signal models beyond sparsity.

The robust PCA problem (Candès et al., 2011; Chandrasekaran et al., 2009, 2011) involves the

separation of low-rank and sparse matrices from their sum. This idea has been used in several

applications ranging from video surveillance to sensor network monitoring. In machine learning

applications, the separation of low-rank and sparse matrices has been used for latent variable

model selection (Chandrasekaran et al., 2010) as well as the robust alignment of multiple occluded

images (Peng et al., 2012). Another type of signal model is the low-dimensional manifold model.

In (Hegde and Baraniuk, 2012b,a), the authors proposed a greedy iterative method for demixing

signals, arising from a mixture of known low-dimensional manifolds by iterative projections onto

the component manifolds.

The problem of signal demixing from linear measurements belongs to a class of linear in-

verse problems that underpin compressive sensing (Candès, 2006; Donoho, 2006); see (Foucart

and Rauhut, ) for an excellent introduction. There, the overarching goal is to recover signals from

(possibly randomized) linear measurements of the form (1.1). More recently, it has been shown

that compressive sensing techniques can also be extended to inverse problems where the available

observations are manifestly nonlinear. For instance, in 1-bit compressive sensing (Boufounos and

Baraniuk, 2008; Plan and Vershynin, 2013a) the linear measurements of a given signal are quantized

in the extreme fashion such that the measurements are binary (±1) and only comprise the sign

of the linear observation. Therefore, the amplitude of the signal is completely discarded by the

quantization operator. Another class of such nonlinear recovery techniques can be applied to the

classical signal processing problem of phase retrieval (Candes et al., 2015) which is somewhat more

challenging than 1-bit compressive sensing. In this problem, the phase information of the signal

measurements may be irrecovably lost and we have only access to the amplitude information of the

signal (Candes et al., 2015). Therefore, the recovery task here is to retrieve the phase information
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of the signal from random observations. Other related works include approaches for recovering

low-rank matrices from nonlinear observations (Davenport et al., 2014; Ganti et al., 2015a). We

mention in passing that inverse problems involving nonlinear observations have also long been stud-

ied in the statistical learning theory literature; see (Kalai and Sastry, 2009; Kakade et al., 2011;

Ganti et al., 2015b; Yi et al., 2015) for recent work in this area. Analogous to our scenarios above,

these works consider both known as well as unknown link functions; these two classes of approaches

are respectively dubbed as Generalized Linear Models (GLM) learning methods and Single Index

Model (SIM) learning methods.

For our algorithmic development, we build upon a recent line of efficient, iterative methods for

signal estimation in high dimensions (Beck and Eldar, 2013; Bahmani et al., 2013b; Yuan et al.,

2014a; Plan et al., 2014; Jain et al., 2014; Yang et al., 2015). The basic idea is to pose the recovery as

a (non-convex) optimization problem in which an objective function is minimized over the set of s-

sparse vectors. Essentially, these algorithms are based on well-known iterative thresholding methods

proposed in the context of sparse recovery and compressive sensing (Blumensath and Davies, 2009;

Needell and Tropp, 2009a). The analysis of these methods heavily depends on the assumption that

the objective function satisfies certain (restricted) regularity conditions; see Sections 1.3 and 1.7 for

details. Crucially, we adopt the approach of (Negahban et al., 2011), which introduces the concept

of the restricted strong convexity (RSC) and restricted strong smoothness (RSS) constants of a loss

function. Bounding these constants in terms of problem parameters n and s, as well as the level

of incoherence in the components, enables explicit characterization of both sample complexity and

convergence rates.

1.3 Preliminaries

In this section, we introduce some notation and key definitions. Throughout this chapter, ‖.‖p

denotes the `p-norm of a vector in Rn, and ‖A‖ denotes the spectral norm of the matrix A ∈ Rm×n.

Let Φ and Ψ be orthonormal bases of Rn.
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Define the set of sparse vectors in the bases Φ and Ψ as follows:

K1 = {Φa | ‖a‖0 ≤ s1},

K2 = {Ψa | ‖a‖0 ≤ s2},

and define K = {a | ‖a‖0 ≤ s}. We use Bn
2 to denote the unit `2 ball. Whenever we use the notation

t = [w; z], the vector t is comprised by stacking column vectors w and z.

In order to bound the sample complexity of our proposed algorithms, we will need some concepts

from high-dimensional geometry. First, we define a statistical measure of complexity of a set of

signals, following (Plan et al., 2014).

Definition 1.1. (Local gaussian mean width.) For a given set K ∈ Rn, the local gaussian mean

width (or simply, local mean width) is defined as follows ∀ t > 0:

Wt(K) = E sup
x,y∈K,‖x−y‖2≤t

〈g, x− y〉.

where g ∼ N (0, In×n).

Next, we define the notion of a polar norm with respect to a given subset Q of the signal space:

Definition 1.2. (Polar norm.) For a given x ∈ Rn and a subset of Q ∈ Rn, the polar norm with

respect to Q is defined as follows:

‖x‖Qo = sup
u∈Q
〈x, u〉.

Furthermore, for a given subset of Q ∈ Rn, we define Qt = (Q − Q) ∩ tBn
2 . Since Qt is a

symmetric set, one can show that the polar norm with respect to Qt defines a semi-norm. Next,

we use the following standard notions from random matrix theory (Vershynin, 2010):

Definition 1.3. (Subgaussian random variable.) A random variable X is called subgaussian if it

satisfies the following:

E exp

(
cX2

‖X‖2ψ2

)
≤ 2,

where c > 0 is an absolute constant and ‖X‖ψ2 denotes the ψ2-norm which is defined as follows:

‖X‖ψ2 = sup
p≥1

1
√
p

(E|X|p)
1
p .
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Definition 1.4. (Isotropic random vectors.) A random vector-valued variable v ∈ Rn is said to be

isotropic if EvvT = In×n.

In order to analyze the computational aspects of our proposed algorithms (in particular, DHT),

we will need the following definition from (Negahban et al., 2011):

Definition 1.5. A loss function f satisfies Restricted Strong Convexity/Smoothness (RSC/RSS)

if:

m4s ≤ ‖∇2
ξf(t)‖ ≤M4s,

where ξ = supp(t1)∪ supp(t2), for all ‖ti‖0 ≤ 2s and i = 1, 2. Also, m4s and M4s are (respectively)

called the RSC and RSS constants. Here ∇2
ξf(t) denotes a 4s×4s sub-matrix of the Hessian matrix,

∇2f(t), comprised of row/column indices in ξ.

As discussed earlier, the underlying assumption in all demixing problems of the form (1.6) is

that the constituent bases are sufficiently incoherent as per the following definition:

Definition 1.6. (ε-incoherence.) The orthonormal bases Φ and Ψ are said to be ε-incoherent if:

ε = sup
‖u‖0≤s, ‖v‖0≤s
‖u‖2=1, ‖v‖2=1

|〈Φu,Ψv〉|. (1.3)

The parameter ε is related to the so-called mutual coherence parameter of a matrix. Indeed, if

we consider the (overcomplete) dictionary Γ = [Φ Ψ], then the mutual coherence of Γ is given by

γ = maxi 6=j |(ΓTΓ)ij |. Moreover, one can show that ε ≤ sγ (Foucart and Rauhut, ).

We now formally establish our signal model. Consider a signal x ∈ Rn that is the superposition

of a pair of sparse vectors in different bases, i.e.,

x = Φw + Ψz , (1.4)

where Φ,Ψ ∈ Rn×n are orthonormal bases, and w, z ∈ Rn such that ‖w‖0 ≤ s, and ‖z‖0 ≤ s. We

define the following quantities:

x̄ =
Φw̄ + Ψz̄

‖Φw̄ + Ψz̄‖2

= α(Φw̄ + Ψz̄), (1.5)
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where α = 1
‖Φw̄+Ψz̄‖2 , w̄ = w

‖w‖2 , z̄ = z
‖z‖2 . Also, define the coefficient vector, t = [w; z] ∈ R2n.

as the vector obtaining by stacking the individual coefficient vectors w and z of the component

signals.

We now state our measurement model. Consider the nonlinear observation model:

yi = g(aTi x) + ei, i = 1 . . .m, (1.6)

where x ∈ Rn is the superposition signal given in (1.4), and g : R 7→ R represents a nonlinear

link function. We denote g(x) as the derivative of Θ(x), i.e., Θ′(x) = g(x). As mentioned above,

depending on the knowledge of the link function g, we consider two scenarios:

1. In the first scenario, the nonlinear link function may be non-smooth, non-invertible, or even

unknown. In this setting, we assume the noiseless observation model, i.e., y = g(Ax). In

addition, we assume that the measurement matrix is populated by i.i.d. unit normal random

variables.

2. In this setup, g represents a known nonlinear, differentiable, and strictly monotonic function.

Further, in this scenario, we assume that the observation yi is corrupted by a subgaussian

additive noise with ‖ei‖ψ2 ≤ τ for i = 1, . . . ,m. We also assume that the additive noise has zero

mean and independent from ai, i.e., E (ei) = 0 for i = 1, . . . ,m. In addition, we assume that the

measurement matrix consists of either (2a) isotropic random vectors that are incoherent with Φ

and Ψ, or (2b) populated with subgaussian random variables.

We highlight some additional clarifications for the second case. In particular, we make the

following :

Assumption 1.7. There exist nonnegative l1, l2 > 0 (resp., nonpositive parameters l1, l2 < 0) such

that 0 < l1 ≤ g′(x) ≤ l2 (resp. l1 ≤ g′(x) ≤ l2 < 0).

In words, the derivative of the link function is strictly bounded either within a positive interval

or within a negative interval. In this chapter, we focus on the case when 0 < l1 ≤ g′(x) ≤ l2. The

analysis of the complementary case is similar.



www.manaraa.com

14

The lower bound on g′(x) guarantees that the function g is a monotonic function, i.e., if x1 < x2

then g(x1) < g(x2). Moreover, the upper bound on g′(x) guarantees that the function g is Lipschitz

with constant l2. Such assumptions are common in the nonlinear recovery literature (Negahban

et al., 2011; Yang et al., 2015).3

In Case 2a, the vectors ai (i.e., the rows of A) are independent isotropic random vectors. For this

case, in addition to incoherence between the component bases, we also need to define a measure of

cross-coherence between the measurement matrix A and the dictionary Γ. The following notion of

cross-coherence was introduced in the early literature of compressive sensing (Candes and Romberg,

2007):

Definition 1.8. (Cross-coherence.) The cross-coherence parameter between the measurement ma-

trix A and the dictionary Γ = [Φ Ψ] is defined as follows:

ϑ = max
i,j

aTi Γj
‖ai‖2

, (1.7)

where ai and Γj denote the ith row of the measurement matrix A and the jth column of the dictionary

Γ.

The cross-coherence assumption implies that
∥∥aTi Γξ

∥∥
∞ ≤ ϑ for i = 1, . . . ,m, where Γξ denotes

the restriction of the columns of the dictionary to set ξ ⊆ [2n], with |ξ| ≤ 4s such that 2s columns

are selected from each basis Φ and Ψ.

1.4 Algorithms and Theoretical Results

Having defined the above quantities, we now present our main results. As per the previous

section, we study two distinct scenarios:

3Using the monotonicity property of g that arises from Assumption 1.7, one might be tempted to simply apply
the inverse of the link function on the measurements yi in (1.6) convert the nonlinear demixing problem to the more
amenable case of linear demixing, and then use any algorithm (e.g., (Hegde and Baraniuk, 2012a)) for recovery of
the constituent signals. However, this näıve way could result in a large error in the estimation of the components,
particularly in the presence of the noise ei in (1.6). This issue has been also considered in (Yang et al., 2015) for
generic nonlinear recovery both from a theoretical as well as empirical standpoint.
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Algorithm 1.1 OneShot

Inputs: Basis matrices Φ and Ψ, measurement matrix A, measurements y, sparsity level s.

Outputs: Estimates x̂ = Φŵ + Ψẑ, ŵ ∈ K1, ẑ ∈ K2

x̂lin ← 1
mA

T y {form linear estimator}
b1 ← Φ∗x̂lin {forming first proxy}
ŵ ← Ps(b1) {sparse projection}
b2 ← Ψ∗x̂lin {forming second proxy}
ẑ ← Ps(b2) {sparse projection}
x̂← Φŵ + Ψẑ {Estimating x̂}

1.4.1 When the link function g is unknown

Recall that we wish to recover components w and z given the nonlinear measurements y and the

matrix A. Here and below, for simplicity we assume that the sparsity levels s1 and s2, specifying

the sets K1 and K2, are equal, i.e., s1 = s2 = s. The algorithm (and analysis) effortlessly extends

to the case of unequal sparsity levels. Our proposed algorithm, that we call OneShot, is described

in pseudocode form below as Algorithm 1.1.

The mechanism of OneShot is simple, and deliberately myopic. At a high level, OneShot first

constructs a linear estimator of the target superposition signal, denoted by x̂lin = 1
mA

T y. Then, it

performs independent projections of x̂lin onto the constraint sets K1 and K2. Finally, it combines

these two projections to obtain the final estimate of the target superposition signal.

In the above description of OneShot, we have used the following projection operators:

ŵ = Ps(Φ∗x̂lin), ẑ = Ps(Ψ∗x̂lin).

Here, Ps denotes the projection onto the set of (canonical) s-sparse signals K and can be imple-

mented by hard thresholding, i.e., any procedure that retains the s largest coefficients of a vector

(in terms of absolute value) and sets the others to zero4. Ties between coefficients are broken

arbitrarily. Observe that OneShot is not an iterative algorithm, and this in fact enables us to

achieve a fast running time.

4The typical way is to sort the coefficients by magnitude and retain the s largest entries, but other methods such
as randomized selection can also be used.
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We now provide a rigorous performance analysis of OneShot. Our proofs follow the geometric

approach provided in (Plan et al., 2014), specialized to the demixing problem. In particular, we

derive an upper bound on the estimation error of the component signals w and z, modulo scaling

factors. In our proofs, we use the following result from (Plan et al., 2014), restated here for

completeness. Please see appendix for the proof of all theoretical results.

Lemma 1.9. (Quality of linear estimator). Given the model in Equation (1.4), the linear estimator,

x̂lin, is an unbiased estimator of x̄ (defined in (1.5)) up to constants. That is, E(x̂lin) = µx̄ and:

E‖x̂lin − µx̄‖22 = 1
m [σ2 + η2(n− 1)], where µ = E(y1〈a1, x̄〉), σ2 = V ar(y1〈a1, x̄〉), η2 = E(y2

1).

We now state our first main theoretical result, with the full proof provided below in Section 1.7.

Theorem 1.10. Let y ∈ Rm be the set of measurements generated using a nonlinear function g

that satisfies the conditions of Lemma (4.9) in (Plan et al., 2014)5. Let A ∈ Rm×n be a random

matrix with i.i.d. standard normal entries. Also, let Φ,Ψ ∈ Rn×n are bases with ε ≤ 0.65, where ε

is as defined in Def. 2.1. If we use Oneshot to recover estimates of w and z (modulo a scaling)

described in equations (1.4) and (1.5), then the estimation error for w (similarly, z) satisfies the

following upper bound in expectation ∀ρ > 0:

E‖ŵ − µαw‖2 ≤ ρ+
2√
m

(
4σ + η

Wρ(K)

ρ

)
+ 8µε . (1.8)

The constant 0.65 is chosen for convenience and can be strengthened. The authors of (Plan

and Vershynin, 2013b; Plan et al., 2014) provide upper bounds on the local mean width Wρ(K) of

the set of s-sparse vectors. In particular, for any ρ > 0 they show that Wρ(K) ≤ Cρ
√
s log(2n/s)

for some absolute constant C. By plugging in this bound and letting ρ → 0, we can combine

components ŵ and ẑ which gives the following:

Corollary 1.11. With the same assumptions as Theorem 1.10, the error of nonlinear estimation

incurred by the final output x̂ satisfies the upper bound:

E‖x̂− µx̄‖2 ≤
4√
m

(
4σ + Cη

√
s log(2n/s)

)
+ 16µε. (1.9)

5Based on this lemma, the nonlinear function g is odd, nondecreasing, and sub-multiplicative on R+.
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Corollary 1.12. (Example quantitative result). The constants σ, η, µ depend on the nature of the

nonlinear function f , and are often rather mild. For example, if f(x) = sign(x), then we may

substitute

µ =

√
2

π
≈ 0.8, σ2 = 1− 2

π
≈ 0.6, η2 = 1,

in the above statement. Hence, the bound in (1.9) becomes:

E‖x̂− µx̄‖2 ≤
4√
m

(
3.1 + C

√
s log(2n/s)

)
+ 13ε . (1.10)

Proof. Using Lemma 1.9, µ = E(yi〈ai, x̄〉) where yi = sign(〈ai, x〉). Since ai ∼ N (0, I) and x̄ has

unit norm, 〈ai, x̄〉 ∼ N (0, 1). Thus, µ = E|g| =
√

2
π where g ∼ N (0, I). Moreover, we can write

σ2 = E(|g|2) − µ2 = 1 − 2
π . Here, we have used the fact that |g|2 obeys the χ2

1 distribution with

mean 1. Finally, η2 = E(y2
1) = 1.

In contrast with demixing algorithms for traditional (linear) observation models, our estimated

signal x̂ outputting from OneShot can differ from the true signal x by a scale factor. Next, suppose

we fix κ > 0 as a small constant, and suppose that the incoherence parameter ε = cκ for some

constant c, and that the number of measurements scales as:

m = O
( s
κ2

log
n

s

)
. (1.11)

Then, the (expected) estimation error ‖x̂ − µx̄‖ ≤ O(κ). In other words, the sample complexity

of OneShot is given by m = O( 1
κ2
s log(n/s)), which resembles results for the linear observation

case (Hegde and Baraniuk, 2012a; Plan et al., 2014)6.

We observe that the estimation error in (1.9) is upper-bounded by O(ε). This is meaningful

only when ε � 1, or when sγ � 1. Per the Welch Bound (Foucart and Rauhut, ), the mutual

coherence γ satisfies γ ≥ 1/
√
n. Therefore, Theorem 1.10 provides non-trivial results only when

s = o(
√
n). This is consistent with the square-root bottleneck that is often observed in demixing

problems; see (Tropp, 2008) for detailed discussions.

6Here, we use the term “sample-complexity” as the number of measurements required by a given algorithm to
achieve an estimation error κ. However, we must mention that algorithms for the linear observation model are able
to achieve stronger sample complexity bounds that are independent of κ.
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The above theorem obtains a bound on the expected value of the estimation error. We can

derive a similar upper bound that holds with high probability. In this theorem, we assume that the

measurements yi for i = 1, 2, . . . ,m have a sub-gaussian distribution (according to Def. 1.3). We

obtain the following result, with full proof deferred to Section 1.7.

Theorem 1.13. (High-probability version of Thm. 1.10.) Let y ∈ Rm be a set of measurements

with a sub-gaussian distribution. Assume that A ∈ Rm×n is a random matrix with i.i.d standard

normal entries. Also, assume that Φ,Ψ ∈ Rn×n are two bases with incoherence ε ≤ 0.65 as in

Definition 2.1. Let 0 ≤ s′ ≤
√
m. If we use Oneshot to recover w and z (up to a scaling)

described in (1.4) and (1.5), then the estimation error of the output of Oneshot satisfies the

following:

‖x̂− µx̄‖2 ≤
4η√
m

(
3s′ + C ′

√
s log

2n

s

)
+ 16µε, (1.12)

with probability at least 1− 4 exp(− cs′2η4

‖y1‖4ψ2
) where C ′, c > 0 are absolute constants. The coefficients

µ, σ, and η are given in Lemma 1.9. Here, ‖y1‖ψ2 denotes the ψ2-norm of the first measurement

y1 (Definition 1.3).

In Theorem 1.13, we stated the tail probability bound of the estimation error for the superpo-

sition signal, x. Similar to Theorem 1.10, we can derive a completely analogous tail probability

bound in terms of the constituent signals w and z.

1.4.2 When the link function g is known

The advantages of OneShot is that it enables fast demixing, and can handle even unknown,

non-differentiable link functions. But its primary weakness is that the sparse components are re-

covered only up to an arbitrary scale factor. This can lead to high estimation errors in practice,

and this can be unsatisfactory in applications. Moreover, even for reliable recovery up to a scale

factor, its sample complexity is inversely dependent on the estimation error. To solve these prob-

lems, we propose a different, iterative algorithm for recovering the signal components. Here, the
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main difference is that the algorithm is assumed to possess (perfect) knowledge of the nonlinear

link function, g. Recall that we define Γ = [Φ Ψ] and t = [w; z] ∈ R2n. First, we formulate our

demixing problem as the minimization of a special loss function F (t):

min
t∈R2n

F (t) =
1

m

m∑
i=1

Θ(aTi Γt)− yiaTi Γt

s. t. ‖t‖0 ≤ 2s.

(1.13)

Observe that the loss function F (t) is not the typical squared-error function commonly en-

countered in statistics and signal processing applications. In contrast, it heavily depends on the

nonlinear link function g (via its integral Θ). Instead, such loss functions are usually used in

GLM and SIM estimation in the statistics literature (Negahban et al., 2011). In fact, the objective

function in (2.3) can be considered as the sample version of the problem:

min
t∈R2n

E(Θ(aTΓt)− yaTΓt),

where a, y and Γ satisfies the model (1.6). It is not hard to show that the solution of this problem

satisfies E(yi|ai) = g(aTi Γt). We note that the gradient of the loss function can be calculated in

closed form:

∇F (t) =
1

m

m∑
i=1

ΓTaig(aTi Γt)− yiΓTai, (1.14)

=
1

m
ΓTAT (g(AΓt)− y).

We now propose an iterative algorithm for solving (2.3) that we call it Demixing with Hard

Thresholding (DHT). The method is detailed in Algorithm 1.2. At a high level, DHT iteratively

refines its estimates of the constituent signals w, z (and the superposition signal x). At any given

iteration, it constructs the gradient using (1.14). Next, it updates the current estimate according

to the gradient update being determined in Algorithm 1.2. Then, it performs hard thresholding

using the operator P2s to obtain the new estimate of the components w and z. This procedure

is repeated until a stopping criterion is met. See Section 1.5 for the choice of stopping criterion

and other details. We mention that the initialization step in Algorithm 1.2 is arbitrary and can be



www.manaraa.com

20

Algorithm 1.2 Demixing with Hard Thresholding (DHT)

Inputs: Bases Φ and Ψ, measurement matrix A, link function g, measurements y, sparsity level

s, step size η′.

Outputs: Estimates x̂ = Φŵ + Ψẑ, ŵ, ẑ

Initialization:(
x0, w0, z0

)
← arbitrary initialization

k ← 0

while k ≤ N do

tk ← [wk; zk] {forming constituent vector}
tk1 ← 1

mΦTAT (g(Axk)− y)

tk2 ← 1
mΨTAT (g(Axk)− y)

∇F k ← [tk1; tk2] {forming gradient}
t̃k = tk − η′∇F k {gradient update}
[wk; zk]← P2s

(
t̃k
)

{sparse projection}
xk ← Φwk + Ψzk {estimating x̂}
k ← k + 1

end while

Return: (ŵ, ẑ)←
(
wN , zN

)
implemented (for example) by running OneShot and obtaining initial points

(
x0, w0, z0

)
. We use

this initialization in our simulation results.

Implicitly, we have again assumed that both component vectors w and z are s-sparse; however,

as above we mention that Algorithm 1.2 and the corresponding analysis easily extend to differing

levels of sparsity in the two components. In Algorithm 1.2, P2s denotes the projection of vector

t̃k ∈ R2n on the set of 2s sparse vectors, again implemented via hard thresholding.

We now provide our second main theoretical result, supporting the convergence analysis of

DHT. In particular, we derive an upper bound on the estimation error of the constituent vector

t (and therefore, the component signals w, z). The proofs of Theorems 1.14, 1.15 and 1.16 are

deferred to section 1.7.

Theorem 1.14. (Performance of DHT) Consider the measurement model (1.6) with all the as-

sumptions mentioned for the second scenario in Section 1.3. Suppose that the corresponding objec-

tive function F satisfies the RSS/RSC properties with constants M6s and m6s on the set Jk with

|Jk| ≤ 6s (k denotes the kth iteration) such that 1 ≤ M6s
m6s
≤ 2√

3
. Choose a step size parameter η′
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with 0.5
M6s

< η′ < 1.5
m6s

. Then, DHT outputs a sequence of estimates tk = [wk; zk] that satisfies the

following upper bound (in expectation) for k ≥ 1:

‖tk+1 − t∗‖2 ≤ (2q)k ‖t0 − t∗‖2 + Cτ

√
s

m
, (1.15)

where q =
√

1 + η′2M2
6s − 2η′m6s and C > 0 is a constant that depends on the step size η′ and the

convergence rate q. Also, t∗ = [w; z] where w and z are the true (unknown) vectors in model (1.2).

Equation (2.4) indicates that Algorithm 1.2 (DHT) enjoys a linear rate of convergence. In

particular, for the noiseless case τ = 0, this implies that Alg. 1.2 returns a solution with accuracy κ

after N = O(log ‖t
0−t‖2
κ ) iterations. The proof of Theorem 1.14 leverages the fact that the objective

function F (t) in (2.3) satisfies the RSC/RSS conditions specified in Definition 2.2. Please refer to

Section 1.7 for a more detailed discussion. Moreover, we observe that in contrast with OneShot,

DHT can recover the components w and z without any ambiguity in scaling factor, as depicted in

the bound (2.4). We also verify this observation empirically in our simulation results in Section 1.5.

Echoing our discussion in Section 1.3, we consider two different models for the measurement

matrix A and derive upper bounds on the sample complexity of DHT corresponding to each case.

First, we present the sample complexity of Alg. 1.2 when the measurements are chosen to be

isotropic random vectors, corresponding to Case (2a) described in the introduction:

Theorem 1.15. (Sample complexity when the rows of A are isotropic.) Suppose that the rows of

A are independent isotropic random vectors. In order to achieve the requisite RSS/RSC properties

of Theorem 1.14, the number of samples needs to scale as:

m = O(s log n log2 s log(s log n)),

provided that the bases Φ and Ψ are incoherent enough.

The sample complexity mentioned in Theorem 1.15 incurs an extra (possibly parasitic) poly-

logarithmic factor relative to the sample complexity of OneShot, stated in (1.11). However, the

drawback of OneShot is that the sample complexity depends inversely on the estimation error κ,

and therefore a very small target error would incur a high overhead in terms of number of samples.
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Removing all the extra logarithmic factors remains an open problem in general (although some

improvements can be obtained using the method of (Cheraghchi et al., 2013)). However, if we

assume additional structure in the measurement matrix A, we can decrease the sample complexity

even further. This corresponds to Case 2b.

Theorem 1.16. (Sample complexity when the elements of A are subgaussian.) Assume that all

assumptions and definitions in Theorem 1.14 holds except that the rows of matrix A are independent

subgaussian isotropic random vectors. Then, in order to achieve the requisite RSS/RSC properties

of Theorem 1.14, the number of samples needs to scale as:

m = O
(
s log

n

s

)
,

provided that the bases Φ and Ψ are incoherent enough.

The leading big-Oh constant in the expression for m in Theorems 1.15 and 1.16 is somewhat

complicated, and hides the dependence on the incoherence parameter ε, the mutual coherence ϑ,

the RSC/RSS constants, and the growth parameters of the link function l1 and l2. Please see

section 1.7 for more details.

In Theorem 1.14, we expressed the upper bounds on the estimation error in terms of the

constituent vector, t. It is easy to translate these results in terms of the component vectors w and

z using the triangle inequality:

max{‖w0 − w∗‖2, ‖z0 − z∗‖2} ≤ ‖t0 − t∗‖2 ≤ ‖w0 − w∗‖2 + ‖z0 − z∗‖2.

See Section 1.7 for proofs and futher details.

1.5 Experimental Results

In this section, we provide a range of numerical experiments for our proposed algorithms based

on synthetic and real data. We compare the performance of OneShot and DHT with a LASSO-

type technique for demixing, as well as a heuristic version of OneShot based on soft thresholding

(inspired by the approach proposed in (Yang et al., 2000)). We call these methods Nonlinear
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convex demixing with LASSO or (NlcdLASSO), and Demixing with Soft Thresholding or DST,

respectively. Before describing our simulation results, we briefly describe these two methods.

NlcdLASSO is a heuristic method motivated by (Plan et al., 2014), although it was not explic-

itly developed in the demixing context. Using our notation from Section 1.3 and 1.4, NlcdLASSO

solves the following convex problem:

min
z,w

∥∥x̂lin − [Φ Ψ][w; z]
∥∥

2

subject to ‖w‖1 ≤
√
s, ‖z‖1 ≤

√
s.

(1.16)

Here, x̂lin denotes the proxy of x (equal to 1
mA

T y) and s denotes the sparsity level of signals w and

z in basis Φ and Ψ, respectively. The constraints in problem (1.16) are convex penalties reflecting

the knowledge that w and z are s-sparse and have unit `2-norm (since the nonlinearity is unknown,

we have a scale ambiguity, and therefore w.l.o.g. we can assume that the underlying signals lie in

the unit ball). The outputs of this algorithm are the estimates ŵ, x̂, and x̂ = Φŵ + Ψẑ.

To solve the optimization problem in (1.16), we have used the SPGL1 solver (van den Berg and

Friedlander, 2008, 2007). This solver can handle large scale problems, which is the scenario that we

have used in our experimental evaluations. We impose the joint constraint ‖t‖1 = ‖[w; z]‖1 ≤ 2
√
s

which is a slight relaxation of the constraints in 1.16. The upper-bound of
√
s in the constraints

is a worst-case criterion; therefore, for a fairer comparison, we also include simulation results with

the constraint ‖t‖1 ≤ %, where % has been tuned to the best of our ability.

On the other hand, DST solves the optimization problem (2.3) via a convex relaxation of the

sparsity constraint. In other words, this method attempts to solve the following relaxed version of

the problem (2.3):

min
t

1

m

m∑
i=1

Θ(aTi Γt)− yiaTi Γt+ β′‖t‖1, (1.17)

where ‖t‖1 represents l1-norm of the constituent vector t and β′ > 0 denotes the tuning parameter.

The solution of this problem at iteration k is given by soft thresholding operator as follows:

tk+1 = Sβ′η′(t
k − η′∇F (tk)),
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where η′ denotes the step size, and the soft thresholding operator, Sλ(.) is given by:

Sλ(y) =



y − λ , if y > λ

0 , if |y| ≤ λ

y + λ , if y < −λ.

Both OneShot and NlcdLASSO do not assume knowledge of the link function, and con-

sequently return a solution up to a scalar ambiguity. Therefore, to compare performance across

algorithms, we use the (scale-invariant) cosine similarity between the original superposition signal

x and the output of a given algorithm x̂ defined as:

cos(x, x̂) =
xT x̂

‖x‖2‖x̂‖2
.

1.5.1 Synthetic Data

As discussed above, for successful recovery we require the constituent signals to be sufficiently

incoherent. To achieve this, we choose Φ to be the 1D Haar wavelets basis, and Ψ to be the

noiselet basis7. For the measurement operator A, we choose a partial DFT matrix. Such matrices

are known to have similar recovery performance as random Gaussian matrices, but enable fast

numerical operations (Candès et al., 2006). Also, we present our experiments based on both non-

smooth as well as differentiable link functions. For the non-smooth case, we choose g(x) = sign(x);

here, we only present recovery results using OneShot and NlcdLASSO since in our analysis

DHT and DST can only handle smooth link functions.

The results of our first experiment are shown in Figure 1.1(a) and Figure 1.1(b). The test

signal is generated as follows: set length n = 220, and generate the vectors w and z by randomly

selecting a signal support with s nonzero elements, and populating the nonzero entries with random

±1 coefficients. The plot illustrates the performance of Oneshot and NlcdLASSO measured by

the cosine similarity for different choices of sparsity level s, where the nonlinear link function

is set to g(x) = sign(x) and we have used both ‖t‖1 ≤ 2
√
s and ‖t‖1 ≤ % constraints. The

7These bases are known to be maximally incoherent relative to each other (Coifman et al., 2001)
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(a) (b) (c)

Figure 1.1: Performance of OneShot and NlcdLASSO according to the Cosine Similarity for

different choices of sparsity level s for g(x) = sign(x). (a) NlcdLASSO with ‖t‖1 ≤ 2
√
s. (b)

NlcdLASSO with ‖t‖1 ≤ %. (c) Comparison of running times of OneShot with NlcdLASSO.

horizontal axis denotes an increasing number of measurements. Each data point in the plot is

obtained by conducting a Monte Carlo experiment in which a new random measurement matrix

A is generated, recording the cosine similarity between the true signal x and the reconstructed

estimate and averaging over 20 trials.

As we can see, notably, the performance of NlcdLASSO is worse than OneShot for any

fixed choice of m and s no matter what upper bound we use on t. Even when the number of

measurements is high (for example, at m = 4550 in plot (b)), we see that OneShot outperforms

NlcdLASSO by a significant degree. In this case, NlcdLASSO is at least 70% worse in terms

of signal estimation quality, while OneShot recovers the (normalized) signal perfectly. This result

indicates the inefficiency of NlcdLASSO for nonlinear demixing.

Next, we contrast the running time of both algorithms, illustrated in Figure 1.1(c). In this

experiment, we measure the wall-clock running time of the two recovery algorithms (OneShot

and NlcdLASSO), by varying signal size x from n = 210 to n = 220. Here, we set m = 500, s = 5,

and the number of Monte Carlo trials to 20. Also, the nonlinear link function is considered as

g(x) = sign(x). As we can see from the plot, OneShot is at least 6 times faster than NlcdLASSO

when the size of signal equals to 220. Overall, OneShot is efficient even for large-scale nonlinear
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demixing problems. We mention that in the above setup, the main computational costs incurred

in OneShot involve a matrix-vector multiplication followed by a thresholding step, both of which

can be performed in time that is nearly-linear in terms of the signal length n for certain choices of

A,Φ,Ψ

Next, we turn to differentiable link functions. In this case, we generate the constituent signal

coefficient vectors, w, z with n = 216, and compare performance of the four above algorithms. The

nonlinear link function is chosen to be g(x) = 2x+ sin(x); it is easy to check that the derivative of

this function is strictly bounded between l1 = 1 and l2 = 3. The maximal number of iterations for

both DHT and DST is set to to 1000 with an early stopping criterion if convergence is detected.

The step size is hard to estimate in practice, and therefore is chosen by manual tuning such that

both DHT and DST obtain the best respective performance.

Figure 1.2 illustrates the performance of the four algorithms in terms of phase transition plots,

following (McCoy and Tropp, 2014). In these plots, we varied both the sparsity level s and the

number of measurements m. For each pair (s,m), as above we randomly generate the test su-

perposition signal by choosing both the support and coefficients of x at random, as well as the

measurement matrix. We repeat this experiment over 20 Monte Carlo trials. We calculate the

empirical probability of successful recovery as the number of trials in which the output cosine sim-

ilarity is greater than 0.99. Pixel intensities in each figure are normalized to lie between 0 and 1,

indicating the probability of successful recovery.

As we observe in Fig. 1.2, DHT has the best performance among the different methods, and

in particular, outperforms both the convex-relaxation based methods. The closest algorithm to

DHT in terms of the signal recovery is DST, while the LASSO-based method fails to recover

the superposition signal x (and consequently the constituent signals w and z). The improvements

over OneShot are to be expected since as discussed before, this algorithm does not leverage the

knowledge of the link function g and is not iterative.

In Fig. 1.3, we fix the sparsity level s = 50 and plot the probability of recovery of different

algorithms with a varying number of measurements. The number of Monte Carlo trials is set
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(a) DHT (b) DST (c) OneShot (d) NlcdLASSO

Figure 1.2: Phase transition plots of various algorithms for solving the demixing problem (1.6) as a

function of sparsity level s and number of measurements m with cosine similarity as the criterion.

Dimension of the signals n = 216.

to 20 and the empirical probability of successful recovery is defined as the number of trials in

which the output cosine similarity is greater than 0.95. The nonlinear link function is set to be

g(x) = 2x + sin(x) for figure (a) and g(x) = 1
1+e−x for figure (b). As we can see, DHT has the

best performance, while NlcdLASSO for figure (a) and Oneshot, and NlcdLASSO for figure

(b) cannot recover the superposition signal even with the maximum number of measurements.

1.5.2 Real Data

In this section, we provide representative results on real-world 2D image data using Oneshot

and NlcdLASSO for non-smooth link function given by g(x) = sign(x). In addition, we illustrate

results for all four algorithms using smooth g(x) = 1−e−x
1+e−x as our link function.

We begin with a 256× 256 test image. First, we obtain its 2D Haar wavelet decomposition and

retain the s = 500 largest coefficients, denoted by the s-sparse vector w. Then, we reconstruct the

image based on these largest coefficients, denoted by x̂ = Φw. Similar to the synthetic case, we

generate a noise component in our superposition model based on 500 noiselet coefficients z. In ad-

dition, we consider a parameter which controls the strength of the noiselet component contributing

to the superposition model. We set this parameter to 0.1. Therefore, our test image x is given by

x = Φw + 0.1Ψz.
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Figure 1.3: Probability of recovery for four algorithms; DHT, STM, Oneshot, and NlcdLASSO.

Sparsity level is set to s = 50 and dimension of the signals equal to n = 216. (a) g(x) = 2x+ sin(x),

(b) g(x) = 1
1+e−x .

Figure 1.4 illustrates both the true and the reconstructed images x and x̂ using Oneshot and

NlcdLASSO. The number of measurements is set to 35000 (using subsampled Fourier matrix with

m = 35000 rows). From visual inspection we see that the reconstructed image, x̂, using Oneshot

is better than the reconstructed image by NlcdLASSO. Quantitatively, we also calculate Peak

signal-to-noise-ratio (PSNR) of the reconstructed images using both algorithms relative to the test

image, x. We obtain PSNR of 19.8335 dB using OneShot, and a PSNR of 17.9092 dB using

NlcdLASSO, again illustrating the better performance of Oneshot compared to NlcdLASSO.

Next, we show our results using a differentiable link function. For this experiment, we consider

an astronomical image illustrated in Fig. 1.5. This image includes two components; the “stars”

component, which can be considered to be sparse in the identity basis (Φ), and the “galaxy”

component which are sparse when they are expressed in the discrete cosine transform basis (Ψ).

The superposition image x = Φw + Ψz is observed using a subsampled Fourier matrix with m =

15000 rows multiplied with a diagonal matrix with random ±1 entries (Krahmer and Ward, 2011).

Further, each measurement is nonlinearly transformed by applying the (shifted) logistic function
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x x̂ (OneShot) x̂ (NlcdLasso)

Figure 1.4: Comparison of Oneshot and NlcdLASSO for real 2D image data from nonlinear

under-sampled observations. Parameters: n = 256× 256, s = 500,m = 35000, g(x) = sign(x).

g(x) = 1
2

1−e−x
1+e−x as the link function. In the recovery procedure using DHT, we set the number of

iterations to 1000 and step size η′ to 150000. As is visually evident, our proposed DHT method is

able to reliably recover the component signals.

1.6 Conclusion

In this chapter, we consider the problem of demixing sparse signals from their nonlinear mea-

surements. We specifically study the more challenging scenario where only a limited number of

nonlinear measurements of the superposition signal are available. As our primary contribution,

we propose two fast algorithms for recovery of the constituent signals, and support these algo-

rithms with the rigorous theoretical analysis to derive nearly-tight upper bounds on their sample

complexity for achieving stable demixing.

We anticipate that the problem of demixing signals from nonlinear observations can be used in

several different practical applications. As future work, we intend to extend our methods to more

general signal models (including rank-sparsity models for matrix valued data), as well as robust

recovery under more general nonlinear observation models.
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(a) Original x (b) Φ(ŵ) Ψ(ẑ)

Figure 1.5: Demixing a real 2-dimensional image from nonlinear observations with DHT. Param-

eters: n = 512 × 512, s = 1000,m = 15000, g(x) = 1
2

1−e−x
1+e−x . Image credits: NASA, McCoy et al.

(2014).

1.7 Appendix. Overview

In this section, we derive the proofs of our theoretical results stated in Section 1.4.

1.7.1 Appendix A. Analysis of OneShot

Our analysis mostly follows the techniques of (Plan et al., 2014). However, several additional

complications in the proof arise due to the structure of the demixing problem. As a precursor, we

need the following lemma from geometric functional analysis, restated from (Plan et al., 2014).

Lemma 1.17. Assume K is a closed star-shaped set. Then for u ∈ K, and a ∈ Rn, one has the

following result ∀ t > 0:

‖PK(a)− u‖2 ≤ max

(
t,

2

t
‖a− u‖Ko

t

)
. (1.18)

We also use the following result of (Plan et al., 2014).

Claim 1.18. (Orthogonal decomposition of ai.) Suppose we decompose the rows of A, ai, as:

ai = 〈ai, x̄〉x̄+ bi, (1.19)
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where bi ∈ Rn is orthogonal to x̄. Then we have bi ∼ N (0, Ix⊥) since ai ∼ N (0, I). Also, Ix⊥ =

I − x̄x̄T . Moreover, the measurements yi in equation (1.6) and the orthogonal component bi are

statistically independent.

Proof of Theorem 1.10. Observe that the magnitude of the signal x may be lost due to the action

of the nonlinear measurement function f (such as the sign(·) function). Therefore, our recovered

signal x̂ approximates the true signal modulo a scaling factor. Indeed, for µ defined in Lemma 1.9,

we have:

‖x̂− µx̄‖2 = ‖Φŵ + Ψẑ − αµΦw − αµΨz‖2

≤ ‖Φ‖‖ŵ − µαw‖2 + ‖Ψ‖‖ẑ − µαz‖2

≤ (ρ+
2

ρ
‖Φ∗x̂lin − µαw‖Ko

ρ
) + (ρ+

2

ρ
‖Ψ∗x̂lin − µαz‖Ko

ρ
). (1.20)

The equality comes from the definition of x̄. The first inequality results from an application of the

triangle inequality and the definition of the operator norm of a matrix, while the second inequality

follows from Lemma 1.17. Now, it suffices to derive a bound on the first term in the above expression

(since a similar bound will hold for the second term). This proves the first part of Theorem 1.10.

We have:

‖Φ∗x̂lin − µαw‖Ko
ρ

= ‖Φ∗ 1

m
Σi(yi〈ai, x̄〉x̄+ yibi)− µαw‖Ko

ρ

≤ ‖Φ∗ 1

m
Σi(yi〈ai, x̄〉x̄)− µαw‖Ko

ρ
+ ‖Φ∗ 1

m
Σiyibi‖Ko

ρ

≤ ‖Φ∗ 1

m
Σi(yi〈ai, x̄〉x̄)− µΦ∗x̄‖Ko

ρ︸ ︷︷ ︸
S1

+ ‖µαΦ∗Ψz‖Ko
ρ︸ ︷︷ ︸

S2

+ ‖Φ∗ 1

m
Σiyibi‖Ko

ρ︸ ︷︷ ︸
S3

. (1.21)
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The first equality follows from Claim 1.18, while the second and third inequalities result from the

triangle inequality. Also:

S1 = ‖Φ∗ 1

m
Σi(yi〈ai, x̄〉x̄)− µΦ∗x̄‖Ko

ρ

= ‖( 1

m
Σi(yi〈ai, x̄〉 − µ))Φ∗x̄‖Ko

ρ

= | 1
m

Σi(yi〈ai, x̄〉 − µ)|‖Φ∗x̄‖Ko
ρ
.

=⇒ E(S2
1) = E(| 1

m
Σi(yi〈ai, x̄〉 − µ)|2‖Φ∗x̄‖2Ko

ρ
).

Define γi
∆
= yi〈ai, x̄〉 − µi. Then,

E(| 1
m

Σi(yi〈ai, x̄〉 − µ)|2) = E(
1

m2
(Σiγi)

2)

= E(
1

m2
(
m∑
i=

γ2
i + Σi 6=jγiγj))

=
1

m2
(
m∑
i=1

Eγ2
i ) =

1

m
Eγ2

1 =
σ2

m
,

where σ2 has been defined in Lemma 1.9. The third and last equalities follow from the fact that

the yi’s are independent and identically distributed. Now, we bound ‖Φ∗x̄‖2Ko
ρ

as follows::

‖Φ∗x̄‖Ko
ρ

= sup
u∈(K−K)∩ρB2

n

〈Φ∗x̄, u〉

= ρ sup
v1∈ 1

ρ
K,v2∈ 1

ρ
K

‖vi‖2≤1,i=1,2

〈Φ∗x̄, v1 − v2〉

≤ 2ρ sup
‖a‖0≤s
‖a‖2≤1

|〈Φ∗x̄, a〉|

≤ 2ρ( sup
‖a‖0≤s
‖a‖2≤1

|〈αw, a〉|+ sup
‖a‖0≤s
‖a‖2≤1

|〈αΦ∗Ψz, a〉|)

≤ 2ρ(α‖w‖2 + sup
‖a‖0≤s
‖a‖2≤1

|〈αΨz,Φa〉|) ≤ 2αρ(‖w‖2 + ‖z‖2ε).

The second inequality follows from (1.4) and the triangle inequality. The last inequality is resulted

from an application of the Cauchy-Schwarz inequality and the definition of ε. As a result, we have:

=⇒ E(S2
1) ≤ 4

α2ρ2σ2

m
(‖w‖2 + ‖z‖2ε)2 . (1.22)
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Similarly we can bound S2 as follows:

E(S2) = E(‖µαΦ∗Ψz‖Ko
ρ
) = E(|µα|‖Φ∗Ψz‖Ko

ρ
)

= |µα|‖Φ∗Ψz‖Ko
ρ

= |µα| sup
u∈(K−K)∩ρB2

n

〈Ψz,Φu〉

= |µα|ρ sup
v1∈ 1

ρ
K,v2∈ 1

ρ
K

‖vi‖2≤1,i=1,2

〈Ψz,Φ(v1 − v2)〉 ≤ 2µαρ‖z‖2ε. (1.23)

Finally, we give the bound for S3. Define L
∆
= 1

mΣiyibi. Then, we get: E(S3) = E‖Φ∗ 1
mΣiyibi‖Ko

ρ
=

E‖Φ∗L‖Ko
ρ
. Our goal is to bound E‖Φ∗L‖Ko

ρ
. Since yi and bi are independent random variables (as

per Claim 1.18), we can use the law of conditional covariance and the law of iterated expectation.

That is, we first condition on yi, and then take expectation with respect to bi. By conditioning

on yi, we have L ∼ N (0, β2Ix⊥) where Ix⊥ = I − x̄x̄T is the covariance of vector bi according to

claim 1.18 and β2 = 1
m2 Σiy

2
i . Define gx⊥ ∼ N (0, Ix⊥). Therefore, L ∼ βgx⊥ (L equivalent to gx⊥

in distribution). Putting everything together, we get:

E(S3) = E‖Φ∗L‖Ko
ρ

= E‖Φ∗βgx⊥‖Ko
ρ

= βE‖Φ∗gx⊥‖Ko
ρ
.

We need to extend the support of distribution of gx⊥ and consequently L from x⊥ to Rn. This

follows from (Plan et al., 2014):

Claim 1.19. Let gE be a random vector which is distributed as N (0, IE). Also, assume that

Γ : Rn → R is a convex function. Then, for any subspace E of Rn such that E ⊆ F , we have:

E(Γ(gE)) ≤ E(Γ(gF )).

Hence, we can orthogonally decompose Rn as Rn = D ⊕ C where D is a subspace supporting

x⊥ and C is the orthogonal subspace onto it. Thus, gRn = gD + gC in distribution such that

gD ∼ N (0, ID), gC ∼ N (0, IC). Also, ‖.‖Ko
ρ

is a convex function since it is a semi-norm. Hence,

ED‖Φ∗gD‖Ko
ρ

= ED‖Φ∗gD + EC(gC)‖Ko
ρ

= ED‖EC|D(Φ∗gD + gc)‖Ko
ρ

≤ EDEC|D‖Φ∗(gD + gC)‖Ko
ρ

= E‖Φ∗gRn‖Ko
ρ
.
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The first inequality follows from Jensen’s inequality, while the second inequality follows from the

law of iterated expectation. Therefore, we get:

E‖Φ∗L‖Ko
ρ

= E‖Φ∗βgx⊥‖Ko
ρ

= βE‖Φ∗gx⊥‖Ko
ρ

≤ βE‖Φ∗gRn‖Ko
ρ

= β sup
u∈(K−K)∩ρB2

n

〈Φ∗gRn , u〉 = βWρ(K).

The last equality follows from the fact that Φ∗gRn ∼ N (0, I). The final step is to take an expectation

with respect to yi, giving us a bound as E(S3) = E‖Φ∗L‖Ko
ρ
≤ E(β)Wρ(K) ≤

√
E(β2)Wρ(K), where

β2 = 1
m2

∑m
i=1 y

2
i . Hence,

E(S3) ≤ η√
m
Wρ(K) . (1.24)

Putting together the results from (1.22), (1.23), and (1.24):

E(‖Φ∗x̂lin − µαw‖Ko
ρ
) ≤ E(S1) + E(S2) + E(S3)

≤
√

E(S1) + E(S2) + E(S3)

≤ 2αρσ√
m

(‖w‖2 + ‖z‖2ε) + 2µαρ‖z‖2ε+
η√
m
Wρ(K).

Therefore, we obtain:

E‖ŵ − µαw‖2 ≤ ρ+
2

ρ
E(‖Φ∗x̂lin − µαw‖Ko

ρ
)

≤ ρ+
4ασ√
m

(‖w‖2 + ‖z‖2ε) + 4µα‖z‖2ε+
2η

ρ
√
m
Wρ(K). (1.25)

Recall that α = 1
‖Φw+Ψz‖2 , hence:

‖Φw + Ψz‖22 ≥ ‖Φw‖22 + ‖Ψz‖22 − 2|〈Φw,Ψz〉|

≥ ‖w‖22 + ‖z‖22 − 2‖w‖2‖z‖2ε,

or, α ≤ 1√
‖w‖22+‖z‖22−2‖w‖2‖z‖2ε

.

E‖ŵ − µαw‖2 ≤ ρ+
4σ√
m

(
‖w‖2 + ‖z‖2ε√

‖w‖22 + ‖z‖22 − 2‖w‖2‖z‖2ε

)

+ 4µ

(
‖z‖2ε√

‖w‖22 + ‖z‖22 − 2‖w‖2‖z‖2ε

)
+

2η

ρ
√
m
Wρ(K).
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Now, let d = ‖z‖2
‖w‖2 . Hence:

E‖ŵ − µαw‖2 ≤ ρ+
4σ√
m

(
1 + dε√

1 + d2 − 2dε

)
+ 4µ

(
d√

1 + d2 − 2dε

)
ε+

2η

ρ
√
m
Wρ(K). (1.26)

It is easy to see that 1+dε√
1+d2−2dε

≤ 2 and d√
1+d2−2dε

≤ 2 provided that ε ≤ 0.65 (here, the constant

2 is just selected for convenience). Now, by plugging these bounds in (1.26), we obtain the desired

result in Theorem 1.10. However, K is a closed star-shaped set (the set of s-sparse signals), and

therefore Wρ(K) = ρW1(K) (Plan et al., 2014). Now using (1.20), we obtain:

E‖x̂− µx̄‖2 ≤ 2ρ+
4√
m

(
4σ + η

Wρ(K)

ρ

)
+ 16µε.

We can use Lemma 2.3 in (Plan and Vershynin, 2013b) and plug in Wρ(K) ≤ Cρ
√
s log(2n/s).

Using the above bound on α and by letting ρ→ 0, we get:

E‖x̂− µx̄‖2 ≤
4√
m

(
4σ + Cη

√
s log(2n/s)

)
+ 16µε, (1.27)

where C > 0 is an absolute constant. This completes the proof of Corollary 1.11.

We now prove the high-probability version of the main theorem. As a precursor, we need a few

preliminary definitions and lemmas:

Definition 1.20. (Subexponential random variable.) A random variable X is subexponential if it

satisfies the following relation:

E exp

(
cX

‖X‖ψ1

)
≤ 2,

where c > 0 is an absolute constant. Here, ‖X‖ψ1 denotes the ψ1-norm, defined as follows:

‖X‖ψ1 = sup
p≥1

1

p
(E|X|p)

1
p .

We should mention that there are other definitions for subexponential random variables (also

for subGaussian defined in Definition 1.3). Please see (Vershynin, 2010) for a detailed treatment.

Lemma 1.21. Let X and Y be two subgaussian random variables. Then, XY is a subexponential

random variable.
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Proof. According to the definition of the ψ2-norm, we have:

(E|XY |p)
1
p = (E|X|p|Y |p)

1
p ≤

((
E|X|2p

) 1
2p
(
E|Y |2p

) 1
2p

)
≤
√

2p‖X‖ψ2‖Y ‖ψ2 , (1.28)

where the first inequality results from Cauchy-schwarz inequality, and the last inequality is fol-

lowed by the subgaussian assumption on X and Y . This shows that the random variable XY is

subexponential random variable according to Definition 5.14.

Lemma 1.22. (Gaussian concentration inequality) See (Vershynin, 2010; Ledoux and Talagrand,

2013). Let (Gx)x∈T be a centered gaussian process indexed by a finite set T . Then ∀t > 0:

P(sup
x∈T

Gx ≥ E sup
x∈T

Gx + t)) ≤ exp

(
− t2

2σ2

)
where σ2 = supx∈T EG2

x <∞.

Lemma 1.23. (Bernstein-type inequality for random variables) (Vershynin, 2010). Let X1, X2, . . . , Xn

be independent sub-exponential random variables with zero-mean. Also, assume that K = maxi ‖Xi‖ψ1.

Then, for any vector a ∈ Rn and every t ≥ 0, we have:

P(|ΣiaiXi| ≥ t) ≤ 2 exp

(
−cmin

{
t2

K2‖a‖22
,

t

K‖a‖∞

})
.

where c > 0 is an absolute constant.

Proof of Theorem 1.13. We follow the proof given in (Plan et al., 2014). Let β = s′

2
√
m

for 0 < s′ <

√
m where m denotes the number of measurements. In (1.21), we saw that ∀ρ > 0:

‖x̂− µx̄‖2 ≤ 2(ρ+
2

ρ
(S1 + S2 + S3)). (1.29)

We attempt to bound each term S1, S2, and S3 with high probability, and then use a union bound

to obtain the desired result.

For S1, we have:

S1 ≤ |
1

m
Σi(yi〈ai, x̄〉 − µ)|‖Φ∗x̄‖Ko

t
.

We note that yi is a sub-gaussian random variable (by assumption) and 〈ai, x̄〉 is a standard normal

random variable. Hence, by Lemma 1.21, yi〈ai, x̄〉 is a sub-exponential random variable. Also,



www.manaraa.com

37

yi〈ai, x̄〉 for i = 1, 2, . . . ,m are independent sub-exponential random variables that can be centered

by subtracting their mean µ. Now, we can apply Lemma 1.23 on | 1
mΣi(yi〈ai, x̄〉 − µ)|. Therefore:

P(| 1
m

Σi(yi〈ai, x̄〉 − µ))| ≥ ηβ) ≤ 2 exp

(
−cβ

2η2m

‖y1‖2ψ2

)
.

Here, η and µ are as defined in 1.9. Using the bound on ‖Φ∗x̄‖Ko
t
, we have:

S1 ≤ 2αηβρ(‖w‖2 + ‖z‖2ε), (1.30)

with probability at least 1− 2 exp(− cβ2η2m
‖y1‖2ψ2

) where c > 0 is some constant.

For S2 we have:

S2 ≤ 2µαρ‖z‖2ε, (1.31)

with probability 1 since S2 is a deterministic quantity.

For S3 we have:

S3 ≤ ‖Φ∗
1

m
Σiyibi‖Ko

ρ
.

To obtain a tail bound for S3, we are using the following:

S3 ≤
1

m
(Σiy

2
i )

1/2‖Φ∗g‖Ko
ρ
.

We need to invoke the Bernstein Inequality (Lemma 1.23) for sub-exponential random variables

(y2
i −η2) for i = 1, 2, . . . ,m which are zero mean subexponential random variables in order to bound

1
m(Σiy

2
i )

1/2. we have
∣∣∣ 1
mΣi(y

2
i − η2)

∣∣∣ ≤ 3η2 with high probability 1− 2 exp(− cmη4

‖y1‖4ψ2
).

Next, we upper-bound ‖Φ∗g‖ (where g ∼ N (0, I)) with high probability. Since Φ is an orthogo-

nal matrix, we have that Φ∗g ∼ N (0, I). Hence, we can use the Gaussian concentration inequality

to bound Φ∗g as mentioned in Lemma 1.22. Putting these pieces together, we have:

S3 ≤
2η√
m

(
Wρ(K) + ρβ

√
m
)
, (1.32)

with probability at least 1 − 2 exp(− cmη4

‖y1‖4ψ2
) − exp(cβ2m). Here, Wρ(K) denotes the local mean

width for the set K1 defining in Definition 1.1.
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Now, combining (1.29), (1.30), (1.31), and (1.32) together with the union bound, we obtain:

‖x̂− µx̄‖2 ≤
4αηs′(‖w‖2 + ‖z‖2ε)√

m
+ 8µα‖z‖2ε+

Cη√
m

√
s log

2n

s
+ 4

ηs′√
m
,

≤ 4η√
m

(
3s′ + C ′

√
s log

2n

s

)
+ 16µε, (1.33)

with probability at least 1−4 exp(− cs′2η4

‖y1‖4ψ2
). The second inequality is due to the bounds being used

in (1.26) provided that ε ≤ 0.65. Also, C,C ′, c > 0 are absolute constants. Here, we have again

used the well-known bound on the local mean width of the set of sparse vectors (for example, see

Lemma 2.3 of (Plan and Vershynin, 2013b)). This completes the proof.

1.7.2 Appendix B. Analysis of DHT

Our analysis of DHT occurs in two stages. First, we define a loss function F (t) that depends

on the nonlinear link function g and the measurement matrix A. We first assume that F (t) sat-

isfies certain regularity conditions (restricted strong convexity/smoothness), and use this to prove

algorithm convergence. The proof of Theorem 1.14 follows the proof of convergence of the itera-

tive hard thresholding (IHT) algorithm in the linear case (Blumensath and Davies, 2009), and is

more closely related to the work of (Yuan et al., 2014a) who extended it to the nonlinear setting.

Our derivation here differs from these previous works in our specific notion of restricted strong

convexity/smoothness, and is relatively more concise. Later, we will prove that the RSS/RSC

assumptions on the loss function indeed are valid, given a sufficient number of samples that obey

certain measurement models. We assume a variety of measurement models including isotropic row

measurements as well as subgaussian measurements. To our knowledge, these derivations of sample

complexity are novel.

First, we state the definitions for restricted strong convexity and restricted strong smoothness,

abbreviated as RSC and RSS. The RSC and RSS was first proposed by (Negahban et al., 2011;

Raskutti et al., 2010); also, see (Bahmani et al., 2013b).

Definition 1.24. A function f satisfies the RSC and RSS conditions if one of the following equiv-

alent definitions is satisfied for all t1, t2 such that ‖t1‖0 ≤ 2s and ‖t2‖0 ≤ 2s:



www.manaraa.com

39

m4s

2
‖t2 − t1‖22 ≤ f(t2)− f(t1)− 〈∇f(t1), t2 − t1〉 ≤

M4s

2
‖t2 − t1‖22, (1.34)

m4s‖t2 − t1‖22 ≤ 〈∇f(t2)−∇f(t1), t2 − t1〉 ≤M4s‖t2 − t1‖22, (1.35)

m4s ≤ ‖∇2
ξf(t)‖ ≤M4s, (1.36)

m4s‖t2 − t1‖2 ≤ ‖∇ξf(t2)−∇ξf(t1)‖2 ≤M4s‖t2 − t1‖2, (1.37)

where ξ = supp(t1) ∪ supp(t2), |ξ| ≤ 4s. Moreover, m4s and M4s are called the RSC-constant and

RSS-constant, respectively. We note that ∇ξf(t) denotes the gradient f restricted to set ξ. In

addition, ∇2
ξf(t) is a 4s × 4s sub-matrix of the Hessian matrix ∇2f(t) comprised of row/column

indices indexed by ξ.

Proof. (Equivalence of Eqs. (1.34), (1.35), (1.36), (1.37)). The proof of above equivalent definitions

only needs some elementary arguments and we state them here for completeness. If we assume that

(1.34) is given, then by exchanging t1 and t2 in (1.34), we have:

m4s

2
‖t1 − t2‖22 ≤ f(t1)− f(t2)− 〈∇f(t2), t1 − t2〉 ≤

M4s

2
‖t1 − t2‖22, (1.38)

by adding (1.38) with (1.34), inequality in (1.35) is resulted. Now, assume that (1.35) is given.

Then we can set t2 = t1 + ∆(t2 − t1) in (1.35) and then letting ∆ → 0 results (1.36) according to

the definition of second derivative. Next, if we assume that (1.36) is given, then we can invoke the

mean value theorem (McLeod, 1965) for twice-differentiable vector-valued multivariate functions:

∇ξf(t2)−∇ξf(t1) =

∫ 1

0
P Tξ ∇2f(ct2 + (1− c)t1)(t2 − t1)dt.

where c > 0 and Pξ denotes the identity matrix which its columns is restricted to set ξ with

‖ξ‖0 ≤ 2s. It follows that:

∥∥∇ξf(t2)−∇ξf(t1)
∥∥ ≤ ∫ 1

0

∥∥P Tξ ∇2f(ct2 + (1− c)t1)(t2 − t1)
∥∥dt

≤M4s‖(t2 − t1)‖.
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where the last inequality follows by (1.36). Similarly, we can establish the lower bound in (1.37)

by invoking the Cauchy Schwartz inequality in (1.35).

Finally, suppose that (1.36) holds. We can establish (1.34) by performing a Taylor expansion

of f(t). For upper bound in (1.34) and some 0 ≤ c ≤ 1, we have:

f(t2) ≤ f(t1)− 〈∇f(t1), t2 − t1〉+
1

2
(t2 − t1)T ∇2

ξf(ct2 + (1− c)t1) (t2 − t1)

≤ f(t1)− 〈∇f(t1), t2 − t1〉+
M4s

2
‖t1 − t2‖22.

The lower bound in (1.34) also follows similarly.

We now give a proof that DHT enjoys the linear convergence, as stated in Theorem 1.14.

Recall that as opposed to the commonly used least-squares loss function, we instead define a

special objective function:

F (t) =
1

m

m∑
i=1

Θ(aTi Γt)− yiaTi Γt,

where Γ = [Φ Ψ], t = [w; z] ∈ R2n, and Θ′(x) = g(x). The gradient and Hessian of the objective

function are given as follows:

∇F (t) =
1

m

m∑
i=1

ΓTaig(aTi Γt)− yiΓTai , (1.39)

∇2F (t) =
1

m

m∑
i=1

ΓTaia
T
i Γg′(aTi Γt) . (1.40)

We start with the projection step in Algorithm 1.2. In what follows, the superscript k denotes

the k-th iteration. Let tk+1 = [tk1; tk2] ∈ R2n be the constituent vector as the kth iteration. Hence,

tk+1 = P2s

(
tk − η′∇F (tk)

)
,

where η′ denotes the step size in Algorithm 1.2 and P2s(.) denotes the hard thresholding operation.

Furthermore, ∇F (tk) is the gradient of the objective function at iteration k. Moreover, we define

sets Sk, Sk+1, S∗ as follows, each of whose cardinalities is no greater than 2s:

supp(tk) = Sk, supp(tk+1) = Sk+1, supp(t∗) = S∗.
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Moreover, define Sk ∪ Sk+1 ∪ S∗ = Jk = J such that |J | ≤ 6s. Define bk = tk − η′∇JF (tk). Then,

‖tk+1 − t∗‖2 ≤ ‖tk+1 − b‖2 + ‖b− t∗‖2 ≤ 2‖b− t∗‖2, (1.41)

where t∗ = [t∗1; t∗2] ∈ R2n such that ‖t∗‖0 ≤ 2s is the solution of the optimization problem in (2.3).

The last inequality follows since tk+1 is generated by taking the 2s largest entries of tk− η′∇F (tk);

by definition of J (Please note that J depends on k, i.e., J := Jk), t
k+1 also has the minimum

Euclidean distance to bk over all vectors with cardinality 2s. Moreover:

‖bk − t∗‖2 = ‖tk − η′∇JF (tk)− t∗‖2

≤ ‖tk − t∗ − η′
(
∇JF (tk)−∇JF (t∗)

)
‖2 + η′‖∇JF (t∗)‖2. (1.42)

Now, by invoking RSC and RSS in the Definition 4.1, we have:

‖tk − t∗ − η′
(
∇JF (tk)−∇JF (t∗)

)
‖22 ≤ (1 + η′

2
M2

6s − 2η′m6s)‖tk − t∗‖22,

where M6s and m6s denote the RSC and RSS constants. The above inequality follows by the upper

bound of (1.37) and the lower bound of (1.35) in Definition 4.1 with the restriction set ξ chosen as

J . Now let q =
√

1 + η′2M2
6s − 2η′m6s. By (1.41) and (1.42), we have:

‖tk+1 − t∗‖2 ≤ 2q‖tk − t∗‖2 + 2η′‖∇JF (t∗)‖2. (1.43)

In order for the algorithm to exhibit linear convergence, we need to have 2q < 1. That is,

η′
2
M2

6s − 2η′m6s +
3

4
< 0.

By solving this quadratic inequality with respect to η′, we obtain that η′, m6s, and M6s should

satisfy

1 ≤ M6s

m6s
≤ 2√

3
,

0.5

M6s
< η′ <

1.5

m6s
.

The bound in (1.43) shows that after enough iterations the first term vanishes and the quality of

estimation depends on the vanishing speed of the second term, 2η′‖∇JF (t∗)‖2 that is determined

by the number of measurements. To bound the gradient in second term, ‖∇JF (t∗)‖2, we need the

following lemma:
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Lemma 1.25. (Khintchine inequality (Vershynin, 2010).) Let Xi be a finite number of independent

and zero mean subgaussian random variables with unit variance. Assume that ‖Xi‖ψ2 ≤ r. Then,

for any real bi and p ≥ 2:(∑
i

b2i

) 1
2

≤

(
E|
∑
i

biXi|p
) 1

p

≤ Cr√p

(∑
i

b2i

) 1
2

.

Recall that our measurement model is given by:

yi = g(aTi Γt) + ei, i = 1, . . . ,m.

As mentioned above, we assume that ei represents the additive subgaussian noise with ‖ei‖ψ2 ≤ τ

for i = 1 . . .m.

We leverage the Khintchine inequality to bound E‖∇JF (t∗)‖2 under the subgaussian assumption

on ei. Denoting by (∇JF (t∗))k as the kth entry of the gradient (restricted to set J), from the

Khintchine inequality, and for each k = 1, . . . , |J |, we have:

(
E |(∇JF (t∗))k|

2
) 1

2 r1=

E

(
1

m

m∑
i=1

(ΓJ)Tk aiei

)2
 1

2

r2
≤ 1

m
E

Cτ√2

(
m∑
i=1

(
(ΓJ)Tk ai

)2
) 1

2


≤ 1

m
Cτ
√

2

(
m∑
i=1

(ΓJ)Tk E
(
aia

T
i

)
(ΓJ)k

) 1
2

r3=
Cτ
√

2√
m

, (1.44)

where ΓJ denotes the restriction of the columns of the dictionary to set J with |J | ≤ 6s such that

3s of the columns are selected from each basis of the dictionary. Here, r1 follows from (1.39), r2

follows from the Khintchine inequality with p = 2 and the fact that ei are independent from ai.

Finally, r3 holds since the rows of A are assumed to be isotropic random vectors. Now, we can

bound E‖∇JF (t∗)‖2 as follows:

E‖∇JF (t∗)‖2 ≤
√

E‖∇JF (tk)‖22 ≤ C
′τ

√
s

m
, (1.45)
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where C ′ > 0 is an absolute constant and the last inequality is followed by (1.44) and the fact that

‖J‖0 ≤ 6s.

Proof of Theorem 1.14. By using induction on (1.43), taking expectations, and finally using the

bound stated in (1.45), we obtain the desired bound in Theorem 1.14 as follows:

‖tk+1 − t∗‖2 ≤ (2q)k ‖t0 − t∗‖2 +
2η′

1− 2q
‖∇JF (t∗)‖2

≤ (2q)k E‖t0 − t∗‖2 + Cτ

√
s

m
, (1.46)

where C > 0 is a constant which depends only on the step size, η′ and q. Also, t0 denotes the initial

value for the constituent vector, t. In addition, in the noiseless case (τ = 0), if we denote κ as the

desired accuracy for solving optimization problem (2.3), then the number of iterations to achieve

the accuracy κ is given by N = O(log ‖t
0−t∗‖2
κ ).

In the above convergence analysis of DHT, we assumed that objective function in (2.3), F (t)

satisfies the RSC/RSS conditions. In this section, we validate this assumption via the proofs for

Theorems 1.15 and 1.16. As discussed above, we separately analyze two cases.

1.7.2.1 Case (a): isotropic rows of A

We first consider the case where the rows of the measurement matrix A are sampled from an

isotropic probability distribution in Rn. Specifically, we make the following assumptions on A:

1. the rows of A are independent isotropic vectors. That is, EaiaTi = In×n for i = 1 . . .m.

2. ‖aTi Γξ‖∞ ≤ ϑ for i = 1 . . .m.

Remark 1.26. Assumption 2 is unavoidable in our analysis, and indeed this is one of the cases

where our derivation differs from existing proofs. The condition ||aTi Γξ||∞ ≤ ϑ requires that all

entries in AΓξ are bounded by some number ϑ. In other words, ϑ captures the cross-coherence

between the measurement matrix, A and the dictionary Γξ = [Φ Ψ]ξ and controls the interaction
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between these two matrices. Without this assumption, one can construct a counter-example with the

Hessian of the objective to be zero with high probability (for instance, consider partial DFT matrix

as the measurement matrix A and Γξ = [I Ψ]ξ with Ψ being the inverse DFT basis).

Modifying (1.40), we define the restricted Hessian matrix as a 4s×4s sub-matrix of the Hessian

matrix:

∇2
ξF (t) =

1

m

m∑
i=1

ΓTξ aia
T
i Γξg

′(aTi Γt), ‖ξ‖0 ≤ 4s. (1.47)

Here, Γξ is the restriction of the columns of the dictionary Γ = [Φ Ψ] with respect to set ξ, such

that 2s columns are selected from each basis. Let Si = ΓTξ aia
T
i Γξg

′(aTi Γt), i = 1 . . .m. As per our

assumption in Section 1.3, the derivative of the link function, g(x) satisfies 0 < l1 ≤ g′(x) ≤ l2. By

this assumption, it is guaranteed that λmin(Si) ≥ 0, i = 1 . . .m; this follows since ΓTξ aia
T
i Γξ is a

positive semidefinite matrix and g′ > 0, we have λmin(Si) = λmin(ΓTξ aia
T
i Γξ)g

′ ≥ 0.

Let Λmax = max
ξ
λmax(∇2

ξF (t)) and Λmin = min
ξ
λmin(∇2

ξF (t)) where λmin and λmax denote the

minimum and maximum eigenvalues of the restricted Hessian matrix. Furthermore, let U be any

index set with |U | ≤ 6s such that ξ ⊆ U . We have:

l1 min
U
λmin

(
1

m

m∑
i=1

ΓTUaia
T
i ΓU

)
≤ Λmin ≤ Λmax ≤ l2 max

U
λmax

(
1

m

m∑
i=1

ΓTUaia
T
i ΓU

)
.

Here, ΓU is the restriction of the columns of Γ with respect to a set U such that 3s columns is

selected from each basis. By taking expectations, we obtain:

l1Emin
U
λmin

(
1

m

m∑
i=1

ΓTUaia
T
i ΓU

)
≤ EΛmin ≤ EΛmax ≤ l2Emax

U
λmax

(
1

m

m∑
i=1

ΓTUaia
T
i ΓU

)
. (1.48)

Inequality in (1.48) shows that for proving RSC and RSS, we need to bound the expectation of the

maximum and minimum eigenvalues of 1
m

∑m
i=1 ΓTξ aia

T
i ΓU over sets U with |U | ≤ 6s. We should

mention that (1.48) establishes RSC/RSS constants in expectation. One can establish RSC/RSS

in tail probability using results in (Rudelson and Vershynin, 2008; Ledoux and Talagrand, 2013).
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As our main tool for bounding the RSC/RSS constants, we use the uniform Rudelson’s inequal-

ity (Vershynin, 2010; Rudelson and Vershynin, 2008).

Lemma 1.27. (Uniform Rudelson’s inequality) Let xi be vectors in Rn for i = 1, . . . ,m and m ≤ n.

Also assume that the entries of xi’s are bounded by ϑ, that is, ‖xi‖∞ ≤ ϑ. Let hi denote independent

Bernoulli random variables (with parameter 1/2) for i = 1 . . .m. Then for every set Ω ⊆ [n], we

have:

E max
|Ω|≤n

∥∥∥ m∑
i=1

hi(xi)Ω(xi)
T
Ω

∥∥∥ ≤ Cϑl√|Ω| max
|Ω|≤n

∥∥∥ m∑
i=1

(xi)Ω(xi)
T
Ω

∥∥∥ 1
2
, (1.49)

where (xi)Ω denotes the restriction of xi to Ω, l = log(|Ω|)
√

logm
√

log n, and Cϑ denotes the

dependency of C only on ϑ.

Before using the above result, we need to restate the uniform version of the standard sym-

metrization technique (Lemma 5.70 in (Vershynin, 2010)):

Lemma 1.28. (Uniform symmetrization) Let xik, i = 1 . . .m be independent random vectors in

some Banach space where indexed by some set Ξ such that k ∈ Ξ. Also, assume that hi, i = 1 . . .m

denote independent Bernoulli random variables (with parameter 1/2) for i = 1 . . .m. Then,

E sup
k∈Ξ

∥∥∥ m∑
i

(xik − Exik)
∥∥∥ ≤ 2E sup

k∈Ξ

∥∥∥ m∑
i

hixik

∥∥∥. (1.50)

Now we apply the Uniform Rudelson’s inequality on λmax

(
1
m

∑m
i=1 ΓTUaia

T
i ΓU

)
over all set U

with |U | ≤ 6s. We have:

R
∆
= Emax

U

∥∥ 1

m

m∑
i=1

ΓTUaia
T
i ΓU − ΓTUΓU

∥∥∥ r1
≤ 2Emax

U

∥∥∥ 1

m

m∑
i=1

hiΓ
T
Uaia

T
i ΓU

∥∥∥
r2
≤ Cϑl

√
6s√

m
Emax

U

∥∥∥ 1

m

m∑
i=1

ΓTUaia
T
i ΓU

∥∥∥ 1
2
, (1.51)

where r1 follows from Lemma 1.28 with hi defined in this lemma and r2 follows from (1.49). In

addition l = log(6s)
√

logm
√

log 2n. Then by application of a triangle inequality, we have:

Emax
U

∥∥∥ 1

m

m∑
i=1

ΓTUaia
T
i ΓU

∥∥∥ ≤ R+ max
U

∥∥ΓTUΓU
∥∥.
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On the other hand by Cauchy-Schwarz inequality, we get:

Emax
U

∥∥∥ 1

m

m∑
i=1

ΓTUaia
T
i ΓU

∥∥∥ 1
2 ≤

(
Emax

U

∥∥∥ 1

m

m∑
i=1

ΓTUaia
T
i ΓU

∥∥∥) 1
2

By combining the above inequalities, we obtain:

R ≤
C ′ϑl
√
s√

m

(
R+ max

U

∥∥ΓTUΓU
∥∥) 1

2

, (1.52)

where C ′ϑ depends only on ϑ. This inequality is a quadratic inequality in terms of R and is easy to

solve. By noting β = maxU
∥∥ΓTUΓU

∥∥, we can write (1.52) as R
β ≤

C′ϑl
√
s√

m
1
β

(
1 + R

β

) 1
2
. Now we can

consider two cases; either R
β ≤ 1, or R

β > 1. As a result, we have:

R ≤ max

(
δ0

(
max
U

∥∥ΓTUΓU
∥∥) 1

2

, δ2
0

)
, (1.53)

where δ0 =
C′ϑl
√
s√

m
. In addition, we can use the Gershgorin Circle Theorem (Horn and Johnson,

2012) to bound λmax(ΓTUΓU ) = ‖ΓTUΓU‖ and λmin(ΓTUΓU ). This follows since:

ΓTUΓU =


I ΦTΨ

ΨTΦ I


6s×6s

,

and hence we have:

∣∣∣λi(ΓTUΓU )− 1
∣∣∣ ≤ (6s− 1)γ, i = 1 . . . 6s,

where γ denotes the mutual coherence of Γ. Hence, the following holds for all index set U :

1− (6s− 1)γ ≤ λmin(ΓTUΓU ) ≤ λmax(ΓTUΓU ) ≤ 1 + (6s− 1)γ, (1.54)

provided that γ ≤ 1
6s−1 to have nontrivial lower bound.

Proof of Theorem 1.15. If we choose m ≥
(
C′′ϑ
δ2
s log(n) log2 s log

(
1
δ2
s log(n) log2 s

)
(1 + (6s− 1)γ)

)
in (1.53), then we have R ≤ δ for some δ ∈ (0, 1) and C ′′ϑ > 0 which depends only on ϑ. If

s = o(1/γ), then we obtain the stated sample complexity in Theorem 1.15.
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1.7.2.2 Case (b): isotropic subgaussian rows of A

Now, suppose that the measurement matrix A has independent isotropic subgaussian rows. We

show that under this assumption, one can obtain better sample complexity bounds compared to

the previous case. We use the following argument (which is more or less standard; see (Rauhut

et al., 2008; Mendelson et al., 2008; Candes et al., 2011)). Let Γ = [Φ Ψ], and let BU = AΓU for

any fixed |U | ≤ 6s, where 3s elements are chosen from each basis. According to the notation from

Section 1.7.2, we have:

l1 min
U
λmin

(
1

m
BT
UBU

)
≤ Λmin ≤ Λmax ≤ l2 max

U
λmax

(
1

m
BT
UBU

)
. (1.55)

where l1, l2 are upper and lower bounds on the derivative of the link function. Therefore, all we

need to do is to bound the maximum and minimum singular values of 1√
m
BU . To do so, we use the

fact that if the rows of A are m independent copies of an isotropic vector with bounded ψ2 norm,

then the following holds for any fixed vector v ∈ R2n:∣∣∣ 1

m

∥∥∥Bv∥∥∥2

2
−
∥∥∥Γv

∥∥∥2

2

∣∣∣ ≤ max(δ0, δ
2
0)

∆
= ε′, (1.56)

with high probability where δ0 = C
√

6s
m + t√

m
for some absolute constant C > 0 (Mendelson et al.,

2008) and ∀t > 0. Now fix any set U as above. Then, one can show using a covering number

argument (for example, Lemma 2.1 in (Rauhut et al., 2008)) with 1
4 -net (N 1

4
) of the unit sphere

and applying the upper bound in (1.54) for any v ∈ U , we get:

P
(∣∣∣ 1

m

∥∥BUv∥∥2

2
−
∥∥ΓUv

∥∥2

2

∣∣∣ ≥ ε′

2

)
≤ 2(9)6s exp

(
− c

(1 + (6s− 1)γ)2 δ
2
0m

)
where c > 0 is a constant. Taking a union bound over all possible subsets U with |U | ≤ 6s and

choosing t = C1 (1 + (6s− 1)γ)2√s log en
6s + u

√
m in δ0 where C1 > 0 (absolute constant) and

u > 0 are arbitrary small constants, we obtain:

P

(
max
U

max
v∈N 1

4

∣∣∣ 1

m

∥∥Bv∥∥2

2
−
∥∥ΓUv

∥∥2

2

∣∣∣ ≥ ε′

2

)
≤ 2 exp

(
−c2u

2m
)
,

where c2 > 0 is an absolute constant. By plugging t in the expression of δ0 and letting u ≤ δ/2

and m sufficiently large, we have δ0 ≤ δ for some δ ∈ (0, 1). As a result, from (1.56), we have:

max
U

∥∥∥ 1

m
BT
UBU − ΓTUΓU

∥∥∥ ≤ δ, (1.57)
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with probability at least 1 − 2 exp
(
−c2u

2m
)
. Therefore, for sufficiently large m (that we specify

below), the following holds with high probability:

λmin

(
ΓTUΓU

)
− δ ≤ λmin

(
1

m
BT
UBU

)
≤ λmax

(
1

m
BT
UBU

)
≤ λmax

(
ΓTUΓU

)
+ δ

We use (1.54) to bound λmax(ΓTUΓU ) = ‖ΓTUΓU‖ and λmin(ΓTUΓU ); as a result,

1− (6s− 1)γ − δ ≤ λmin

(
1

m
BT
UBU

)
≤ λmax

(
1

m
BT
UBU

)
≤ 1 + (6s− 1)γ + δ (1.58)

Thus, we obtain the desired bound in (1.55). That is:

l1 (1− (6s− 1)γ − δ) ≤ Λmin ≤ Λmax ≤ l2 (1 + (6s− 1)γ − δ) . (1.59)

holds with high probability for some 0 < δ < 1− (6s− 1)γ.

Proof of Theorem 1.16. The probability of failure of the above statement can be vanishingly small

if we set m ≥ C′

δ2
s log n

s for some δ ∈ (0, 1) and absolute constant C ′ > 0. Note that we only

obtain nontrivial upper and lower bounds on Λmin,Λmax if γ ≤ 1
6s−1 . Assuming constant δ and

coherence γ inversely proportional to s, we obtain the required sample complexity of DHT as:

m = O
(
s log n

s

)
.

For both cases (a) and (b), RSC and RSS constants follow by settingM6s ≤ l2 (1 + (6s− 1)γ + δ)

and m6s ≥ l1 (1− (6s− 1)γ − δ). As we discussed in the begging of section 1.7.2, we require that

0.5
M6s

< η′ < 1.5
m6s

in order to establish linear convergence of DHT. Hence, for linear convergence, the

step size must satisfy:

0.5

l2 (1 + (6s− 1)γ + δ)
< η′ <

1.5

l1 (1− (6s− 1)γ − δ)

for some 0 < δ < 1− (6s− 1)γ.
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CHAPTER 2. DEMIXING STRUCTURED SUPERPOSITIONS IN HIGH

DIMENSIONS WITH PERIODIC AND APERIODIC NONLINEAR

FUNCTIONS

In chapter 1, the demixing problem of constituent components has been considered with focus

on two issues. First, we assume that the constituent components have arbitrary sparse represen-

tations in some incoherent dictionaries. Then, in the second scenario in which the link function

is assumed to be known, we consider the monotonic nonlinear link function. In this chapter, we

target both of these issues. In particular, we study certain families of structured sparsity models

in the constituent components, and propose a method which provably recovers the components

given (nearly) m = O(s) samples where s denotes the sparsity level of the underlying components.

This strictly improves upon previous nonlinear demixing techniques and asymptotically matches

the best possible sample complexity. Regarding the second issue, we study the bigger class of

nonlinear link functions and consider demixing problem from a limited number of nonlinear obser-

vations where this nonlinearity is due to a either periodic function or aperiodic function. For both

of these directions, we provide a range of simulations to illustrate the performance of the proposed

algorithms.

2.1 Introduction

2.1.1 Motivation

As we discussed in the previous chapter, the demixing problem involves disentangling two (or

more) high-dimensional vectors from their linear superposition. In applications involving signal

recovery, such superpositions can be used to model situations when there is some ambiguity in the

components (e.g., the true components can be treated as “ground truth” + “outliers”) or when

there is some existing prior knowledge that the true underlying vector is a superposition of two
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components. Similar to chapter 1, we focus on the sample-poor regime where the dimension far

exceeds the number of measurements. Hence, our observation model is given by:

y = g(Xβ) + e = g(X(Φθ1 + Ψθ2)) + e, (2.1)

where g denotes a nonlinear link function and e denotes observation noise. This is akin to the

Generalized Linear Model (GLM) as well as the Single Index Model (SIM) from statistical learn-

ing (Kakade et al., 2011). Reconstruction of high dimensional vectors in the GLM setting has been

an intense focus of study in the statistical learning literature in recent years; applications of such

recovery methods span scalable machine learning (Kakade et al., 2011), 1-bit compressive sens-

ing (Boufounos and Baraniuk, 2008; Jacques et al., 2013), and imaging (Candes et al., 2015). In

signal processing applications, observation models with periodic link functions have been proposed

for scalar quantization (Boufounos, 2012) as well as computational imaging (Zhao et al., 2015).

2.1.2 Summary of Contributions

In this chapter, we focus on the case where the components θ1, θ2 obey certain structured

sparsity assumptions. Structured sparsity models are useful in applications where the support

patterns (i.e., the coordinates of the nonzero entries) belong to model-specific restricted families

(for example, the support is assumed to be group-sparse (Huang and Zhang, 2010)). It is known

that such assumptions can significantly reduce the required number of samples for estimating the

underlying signal, compared to generic sparsity assumptions (Baraniuk et al., 2010; Hegde et al.,

2015a). In addition, we consider two classes of link functions: aperiodic and periodic functions, and

accordingly, two different demixing approaches.

In the aperiodic case, we follow the setup of second scenario (section 1.4.2) in chapter 1 where

g is assumed to be monotonic; satisfies some type of restricted strong convexity (RSC) (Negahban

et al., 2011); and some type of restricted strong smoothness (RSS) assumptions (Yang et al., 2015).

For this case, we develop a non-convex iterative algorithm that stably estimates the components

θ1 and θ2. In the periodic case, specifically, we let the designing matrix, X be factorized as

X = DB, where D ∈ Rm×q, and B ∈ Rq×n have some specific structures; please see Section 2.2
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for details. Again, for this case, we demonstrate a novel two-stage algorithm that stably estimate

the components θ1 and θ2. In particular, we provide a theoretical sample complexity analysis.

Our theory demonstrates that stable recovery from nonlinear sinusoidal observations can be done

with essentially the same number of samples as standard sparse recovery with linear observations.

The only additional cost is a logarithmic factor overhead in the dimension of the embedding that

depends on n and the Euclidean norm of the original data vector.

For both cases considered above, we show that under certain sufficiency conditions, the perfor-

mance of our methods strictly improves upon previous nonlinear demixing techniques, and asymp-

totically matches (close to) the best possible sample-complexity. We also support the theories and

the algorithms via a range of numerical experiments.

2.1.3 Prior Work

Demixing approaches in high dimensions with structured sparsity assumptions have appeared

before in the literature (McCoy and Tropp, 2014; McCoy et al., 2014; Rao et al., 2014). However,

our method differs from these earlier works in a few different aspects. The majority of these methods

involve solving a convex relaxation problem; in contrast, our algorithm is manifestly non-convex.

Despite this feature, for certain types of structured superposition models, our method provably re-

covers the components given (nearly) m = O(s) samples. Moreover, these earlier methods have not

explicitly addressed the nonlinear observation model (with the exception of (Plan et al., 2014)). In

this chapter, we leverage the structured sparsity assumptions to our advantage, and show that this

type of structured sparsity priors significantly decreases the sample complexity (both for periodic

and aperiodic nonlinearities) for estimating the signal components.

To study periodic nonlinearities, our approach relies upon ideas from several related prob-

lems in machine learning and signal processing. The technique of using random projections in

conjunction with sinusoidal nonlinearities has emerged as a popular alternative for kernel-based

inference (Vedaldi and Zisserman, 2012; Shi et al., 2009; Le et al., 2013; Lopez-Paz et al., 2014).

However, these works do not explicitly consider recovering the original data from the nonlinear ran-
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dom projections. While there has been considerable recent interest in reconstructing from nonlinear

measurements (features), the majority of the methods deal with the case where the nonlinearity is

either monotonic (Kakade et al., 2011) or satisfies restricted regularity conditions (Bahmani et al.,

2013a; Yang et al., 2015). None of the proposed methods in the literature can be directly applied

for the specific problem of stable sparse reconstruction from random sinusoidal features, with one

exception: the theoretical framework developed in (Plan et al., 2014) can indeed be adapted to

our problem. However, the recovery algorithm only yields an estimate up to a scalar ambiguity,

which can be problematic in applications. Moreover, even if scalar ambiguities can be tolerated, we

show in our experimental results below that the sample complexity of this method is far too high

in practice. In contrast, our proposed method yields stable and accurate results with only a mild

factor increase in sample complexity when compared to standard sparse recovery.

2.2 Preliminaries

We first introduce some notations. Let ‖.‖q denote the `q-norm of a vector. Denote the spectral

norm of the matrix X as ‖X‖ and the true parameter vector, θ = [θ1; θ2] ∈ R2n as the vector

obtaining by stacking the true and unknown coefficient vectors, θ1, θ2. For simplicity of exposition,

in this chapter we suppose that the components θ1 and θ2 exhibit block sparsity with sparsity s

and block size b (Baraniuk et al., 2010). (Analogous approaches apply for other structured sparsity

models.)

The problem (2.1) is inherently ill-posed. To resolve this issue, we need to assume that the

coefficient vectors θ1, θ2 are somehow distinguishable from each other. This is characterized by a

notion of incoherence of the components θ1, θ2 (Soltani and Hegde, 2017a).

Definition 2.1. The bases Φ and Ψ are called ε-incoherent if ε = sup‖u‖0≤s, ‖v‖0≤s
‖u‖2=1, ‖v‖2=1

|〈Φu,Ψv〉|.

For the analysis of aperiodic link functions, we need the following standard definition (Negahban

et al., 2011):
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Definition 2.2. A function f : R2n → R satisfies Structured Restricted Strong Convexity/Smoothness

(SRSC/SRSS) if:

m4s ≤ ‖∇2
ξf(t)‖ ≤M4s, t ∈ R2n,

where ξ = supp(t1)∪ supp(t2), for all ti ∈ R2n such that ti belongs to (2s, b) block-sparse vectors for

i = 1, 2, and m4s and M4s are (respectively) the SRSC and SRSS constants. Also, ∇2
ξf(t) denotes

a 4s× 4s sub-matrix of the Hessian matrix ∇2f(t) comprised of rows/columns indexed by ξ ⊂ [2n].

Furthermore, for aperiodic functions, we assume that the derivative of the link function is strictly

bounded either within a positive interval, or within a negative interval. In addition, let βj denotes

the jth entry of the signal β ∈ Rn. Also, for j ∈ {1, 2, . . . , q}, β(j : q : (k − 1)q + j) ∈ Rk denotes

the sub-vector of β, starting at index j+ qr, where r = 0, 1, . . . , k−1. Finally, Y ((j : q : (k−1)q, l)

represents the sub-vector made by picking the lth column of any matrix Y and choosing the entries

of this column as stated.

For the analysis of periodic link functions, we let the design matrix X be factorized as X = DB,

whereD ∈ Rm×q, and B ∈ Rq×n. We assume thatm is a multiple of q, and thatD is a concatenation

of k diagonal matrices of q × q such that the diagonal entries in the blocks of D are i.i.d. random

variables distributed uniformly within an interval [−T, T ] for some T > 0. The choice of B is flexible

and can be chosen such that it supports stable demixing. In particular, as (Soltani and Hegde,

2017a) has shown, B can be any random matrix with independent subgaussian rows. Overall, our

low-dimensional observation model can be written as:

y = g(DBβ) + e = g(DB(Φθ1 + Ψθ2)) + e, (2.2)

where g is either sinusoidal function, or any periodic function such that in each period, it behaves

monotonically. Furthermore, D = [D1, . . . , Dk]
T comprises k diagonal matrices Di’s, and e ∈ Rm

denotes additive noise such that e ∼ N (0, σ2I). The goal is to stably recover θ1, θ2 from the

embedding y. The diagonal structure of the matrix D reduces the the final recovery of underlying

components to first obtaining a good enough estimation of Bβ, and then using a linear demixing

approach from a (possibly noisy) estimate of Bβ will lead to the estimation of θ1, θ2.
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2.3 Algorithms and Analysis

In this section, we describe our algorithm and theoretical result for both aperiodic and periodic

link functions.

2.3.1 Aperiodic link functions

To solve the demixing problem in (2.1), we consider the minimization of a special loss function

F (t), following (Soltani and Hegde, 2017a):

min
t∈R2n

F (t) =
1

m

m∑
i=1

Θ(xTi Γt)− yixTi Γt s. t. t ∈ D, (2.3)

where Θ′(x) = g(x), Γ = [Φ Ψ], xi is the ith row of the design matrix X and D denotes the

set of length-2p vectors formed by stacking a pair of (s, b) block-sparse vectors. The objective

function in (2.3) is motivated by the single index model in statistics; for details, see (Soltani and

Hegde, 2017a). To approximately solve (2.3), we propose an algorithm which we call it Structured

Demixing with Hard Thresholding (STRUCT-DHT). The pseudocode of this algorithm is given in

Algorithm 2.1.

At a high level, STRUCT-DHT tries to minimize loss function defined in (2.3) (tailored to

g) between the observed samples y and the predicted responses XΓt̂, where t̂ = [θ̂1; θ̂2] is the

estimate of the parameter vector after N iterations. The algorithm proceeds by iteratively updating

the current estimate of t̂ based on a gradient update rule followed by (myopic) hard thresholding

of the residual onto the set of s-sparse vectors in the span of Φ and Ψ. Here, we consider a

version of DHT (Soltani and Hegde, 2017a) which is applicable for the case that coefficient vectors

θ1 and θ2 have block sparsity. For this setting, we use component-wise block-hard thresholding,

Ps;s;b (Baraniuk et al., 2010). Specifically, Ps;s;b(t̃k) projects the vector t̃k ∈ R2n onto the set of

concatenated (s, b) block-sparse vectors by projecting the first and the second half of t̃k separately.

Now, we provide the theorem supporting the convergence analysis and sample complexity (required

number of observations for successful estimation of θ1, θ2) of STRUCT-DHT.
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Algorithm 2.1 Structured Demixing with Hard Thresholding (STRUCT-DHT)

Inputs: Bases Φ and Ψ, design matrix X, link function g, observation y, sparsity s, block size

b, step size η′.

Outputs: Estimates β̂ = Φθ̂1 + Ψθ̂2, θ̂1, θ̂2

Initialization:(
β0, θ0

1, θ
0
2

)
← random initialization

k ← 0

while k ≤ N do

tk ← [θk1 ; θk2 ] {Forming constituent vector}
tk1 ← 1

mΦTXT (g(Xβk)− y)

tk2 ← 1
mΨTXT (g(Xβk)− y)

∇F k ← [tk1; tk2] {Forming gradient}
t̃k = tk − η′∇F k {Gradient update}
[θk1 ; θk2 ]← Ps;s;b

(
t̃k
)
{Projection}

βk ← Φθk1 + Ψθk2 {Estimating x̂}
k ← k + 1

end while

Return:
(
θ̂1, θ̂2

)
←
(
θN1 , θ

N
2

)

Theorem 2.3. Consider the observation model (2.1) with all the assumption and definitions men-

tioned in the section 2.2. Suppose that the corresponding objective function F satisfies the Struc-

tured SRSS/SRSC properties with constants M6s and m6s such that 1 ≤ M6s
m6s
≤ 2√

3
. Choose a

step size parameter η′ with 0.5
M6s

< η′ < 1.5
m6s

. Then, DHT outputs a sequence of estimates (θk1 , θ
k
1)

(tk+1 = [θk1 ; θk1 ]) such that the estimation error of the underlying signal satisfies the following upper

bound (in expectation) for any k ≥ 1:

‖tk+1 − θ‖2 ≤ (2q)k ‖t0 − θ‖2 + Cτ

√
s

m
, (2.4)

where q = 2
√

1 + η′2M2
6s − 2η′m6s and C > 0 is a constant that depends on the step size η′ and

the convergence rate q. Here, θ denotes the true stacked signal defined in section 2.2.

The inequality (2.4) indicates the linear convergence behavior of our proposed algorithm. Specif-

ically, in the noiseless scenario to achieve κ-accuracy in estimating the parameter vector t̂ = [θ̂1; θ̂2],

Struct-DHT only requires log
(

1
κ

)
iterations. We also have the following theorem regarding the

sample complexity of Alg. 2.1:
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Theorem 2.4. If the rows of X are independent subgaussian random vectors (Vershynin, 2010),

then the required number of samples for successful estimation of the components, n is given by

O
(
s
b log n

s

)
. Furthermore, if b = Ω

(
log n

s

)
, then the sample complexity of our proposed algorithm

is given by m = O(s), which is asymptotically optimal.

The big-Oh constant hides dependencies on various parameters, including the coherence param-

eter ε, as well as the upper and the lower bounds on the derivative of the link function g.

2.3.2 Periodic Link Functions

In this section, we focus on the periodic link functions which are either sinusoidal (complex-

exponential), or any periodic function such that it is monotonic within each period. We start with

the sinusoidal (complex-exponential) link function and establishing recovery of an underlying signal

which is arbitrary sparse, or is the superposition of two arbitrary sparse components. Then, we

generalize this approach to other periodic link functions. Finally, we apply this framework to our

main problem, demixing of two constituent components with structured sparsity.

2.3.2.1 Stable Recovery Of Sparse Vectors From Random Sinusoidal Feature Maps

Setup. Several popular techniques in statistical regression and classification rely on the kernel

trick, which enables approximating complicated nonlinear functions given a sufficiently large number

of training samples. However, in large-scale problems where the number as well as dimension of

the training data points is high, the computational costs of kernel-based techniques can be severe.

One approach to alleviate these computational costs is via the use of random sinusoidal feature

maps, pioneered by (Rahimi and Recht, 2007). The mechanism is conceptually simple. Suppose

that the kernel of choice is the Gaussian (RBF) kernel. Prior to the inference stage, the approach

suggests performing a dimensionality reduction of a given data vector by first multiplying by a

random Gaussian matrix, followed by the application of a nonlinearity (specifically, a sinusoid or

complex exponential). Mathematically, one can represent the above process as follows. Let X ⊆ Rn

be any set in the data space, and consider a data vector x ∈ X . Construct a matrix B ∈ Rq×n
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whose entries are independently from a normal distribution. Then, modulo scaling factors, the

random sinusoidal feature map, y = A(x), can be represented as the composition of the linear map

A ∈ Rm×n with a (complex) sinusoidal nonlinearity (see section 2.3.2.1 for more details):

zj = (Ax)j , yj = exp(i zj), j = 1 . . .m . (2.5)

One can alternately replace the complex exponential by a real-valued sinusoidal function with

similar consequences. The authors of (Rahimi and Recht, 2007) show that collecting a sufficient

number of such features leads to statistically robust performance of kernel-based learning methods.

Subsequent works (Vedaldi and Zisserman, 2012; Shi et al., 2009; Le et al., 2013; Lopez-Paz et al.,

2014) have progressively extended this approach to more general types of kernels, faster methods of

dimensionality reduction, as well as sparsity assumptions on the training data (Chang et al., 2016).

Moving beyond inference, a natural question arises whether the original data vector x can at

all be reconstructed from the nonlinear features y. Geometrically, we would like to understand

if (and how) the random feature map can be efficiently inverted, given the observations y and

knowledge of the dimensionality reduction operator B. This question is of both theoretical and

practical interest; if the embedding is shown to be reversible, then it could have implications for

the privacy-preserving properties of random feature maps.

We consider a slightly more general version of the model (2.5) where the features y can be

corrupted by noise. Moreover, we start with the data vector x which is s-sparse, i.e., it contains

no more than s non-zeros (We will consider the structured sparsity later.). For this model, we

propose an efficient, two-stage algorithm for reconstructing signals from a small number of random

sinusoidal features (in particular, far smaller than the dimension of the data). To the best of our

knowledge, our method is the first to propose an algorithm that is specialized to reconstructing

sparse vectors from random sinusoidal feature maps.

Techniques. There are two main challenges that we will need to overcome. The first challenge

is due to the ill-posed nature of the problem; in the high-dimensional regime, the total number of

samples can be far less than the native dimension of the data. The second (and more compelling)
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challenge arises due to the fact that the sinusoidal transfer function is highly non-invertible. The

typical way to deal with this is to assume some upper bound on the magnitude of the entries of the

linear projection (Ax). However, we observe that unless this upper bound is relatively small, we

can only estimate zj up to some unknown integer multiple of 2π. If the projected dimension of the

linear embedding, q, is large, then the number of possible combinations becomes exponential in q.

We alleviate these challenges using a simple idea. The key is to decouple the problem of

inverting the sinusoidal nonlinearity from the sparse recovery step by replacing the linear map A

with a different (carefully designed) map that still possesses all the properties required for reliable

kernel-based inference. Particularly, our new linear map A is the product of two matrices D · B;

the way to construct D and B is described in detail below. This technique has been inspired by

some recent approaches for the related problem of phase retrieval (Iwen et al., 2015; Bahmani and

Romberg, 2015). Using this decoupling technique, we can separately solve the inversion of the

nonlinearity and the actual recovery of the sparse high-dimensional data in two stages.

For the first stage, we individually estimate the linear projection z = Bx using classical signal

processing techniques for line spectral estimation. In particular, we leverage the method of matched

filtering from random samples (Eftekhari et al., 2013). In the absence of noise, any spectral es-

timation technique (such as MUSIC, root-MUSIC, and ESPRIT) can also be used; however, our

Monte Carlo simulations show below that the randomized method of (Eftekhari et al., 2013) et al.

is considerably more robust compared to these more classical methods. For the second stage, we

can use any sparse recovery method of our choice. In our experiments, we have used the CoSaMP

algorithm proposed in (Needell and Tropp, 2009b).

While conceptually simple, the generic nature of our algorithm is advantageous in many ways.

From a theoretical perspective, mirroring the approach of (Iwen et al., 2015), we can combine

existing results for robust line spectral estimation with robust sparse recovery and obtain guarantees

on the sample complexity and robustness of our algorithm. Moreover, since the nonlinear inversion

and the sparse recovery steps are decoupled, one could conceivably extend this decoupling approach

to a variety of other signal models and recovery algorithms (such as structured-sparsity (Baraniuk
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et al., 2010; Hegde et al., 2015a), low-rank matrix models (Recht et al., 2010a), and demixing a

pair of sparse incoherent vectors (Soltani and Hegde, 2017a)).

Algorithm. In this section, we present our algorithm for solving problem (2.5) and provide

the theory for sample complexity of the proposed algorithm. We first establish some notation. Let

the jth entry of the signal x ∈ Rn be denoted as xj . For any j ∈ [q], x(j : q : (k − 1)q + j) denotes

the sub-vector in Rk formed by the entries of x starting at index j + qr, where r = 0, 1, . . . , k − 1.

Similarly, A((j : q : (k − 1)q, l) represents the sub-vector constructed by picking the lth column of

any matrix A and selecting the entries of this column with the same procedure as mentioned.

As the key component in our approach, instead of using a random Gaussian linear projection

as proposed in (Rahimi and Recht, 2007), we construct a linear operator A that can be factorized

as A = DB, where D ∈ Rm×q, and B ∈ Rq×n. We assume that m is a multiple of q, and that D is

a concatenation of k diagonal matrices of q× q such that the diagonal entries in the blocks of D are

i.i.d. random variables, drawn from a distribution that we specify later. The choice of B depends

on the model assumed on the data vector x; if the data is s-sparse, then B can be any matrix that

supports stable sparse recovery (more precisely, B satisfies the null-space property (Foucart and

Rauhut, )). Overall, our low-dimensional feature map can be written as:

y = exp(iDBx) + e = exp


i



D1

D2

...

Dk


Bx


+ e, (2.6)

where Di are diagonal matrices and e ∈ Rm denotes additive noise such that e ∼ N (0, σ2I). The

goal is to stably recover x from the embedding y.

By the block diagonal structure of the outer projection D, we can reduce the overall reconstruc-

tion problem to first obtaining a good enough estimate of each entry of Bx. We show below that
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this can be achieved using line spectral estimation methods. The output of the first stage is used

as the input of the second stage, which involves estimating x from a (possibly noisy) estimate of

Bx.

Line spectral estimation. Consider the observation model (2.6) and let z = Bx ∈ Rq.

Suppose we know a priori that the entries of z belong to some bounded set Ω ∈ R. Fix l ∈ [q], and

let t = D(l : q : (k− 1)q+ l, l), u = y(l : q : (k− 1)q+ l), h = e(l : q : (k− 1)q+ l) which are vectors

in Rk. We observe that:

u = exp(izlt) + h .

In other words, u can be interpreted as a collection of time samples of a (single-tone, potentially

off-grid) complex-valued signal with frequency zl ∈ Ω, measured at time locations t. Therefore, we

can independently estimate zl for l = 1, . . . , q by solving a least-squares problem (Eftekhari et al.,

2013):

ẑl = arg min
v∈Ω

‖u− exp(i vt)‖22 = arg max
v∈Ω

|〈u, ψv〉| , (2.7)

for all l = 1, . . . , q, where ψv ∈ Rk denotes a template vector given by ψv = exp(jtv) for any

v ∈ Ω. In essence, the solution of the least-squares problem can be interpreted as a matched filter.

Numerically, the optimization problem in (2.7) can be solved using a grid search over the set Ω,

and the resolution of this grid search controls the running time of the algorithm; for fine enough

resolution, the estimation of zl is more accurate albeit with increased running time. This issue

is also discussed in (Eftekhari et al., 2013) and more sophisticated spectral estimation techniques

have appeared in (Mishali and Eldar, 2011; Tang et al., 2013; Chen and Chi, 2014). After obtaining

all the estimates ẑl’s, we stack them in a vector ẑ.

Sparse recovery. We now propose to recover the high-dimensional signal x ∈ Rm in

problem (2.6) using our estimated ẑ ∈ Rq. According to our model, we also have assumed that

the matrix B supports stable sparse recovery, and the underlying signal x is s-sparse. Hence, we

can use any generic sparse recovery algorithm of our choice to obtain an estimate of x. In our
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simulations below, we use the CoSaMP algorithm (Needell and Tropp, 2009b) due to its speed

and ease of parameter tuning. Again, we stress that this stage depends on a model assumption

on x, and other recovery algorithms (such as structured-sparse recovery (Baraniuk et al., 2010),

low-rank matrix recovery (Recht et al., 2010a), or demixing a pair of sparse (but incoherent)

vectors (Soltani and Hegde, 2017a)) can equally well be used. Our overall algorithm, Matched

Filtering+Sparse recovery (MF-Sparse) is described in pseudocode form in Algorithm 2.2. We now

provide a theoretical analysis of our proposed algorithm. Our result follows from a concatenation

of the results of (Eftekhari et al., 2013) and (Needell and Tropp, 2009b).

Theorem 2.5 (Sample complexity of MF-Sparse). Assume that the nonzero entries of D are i.i.d.

samples from a uniform distribution [−T, T ], and the entries of B are i.i.d. samples from N (0, 1/q).

Also, assume ‖x‖2 ≤ R for some constant R > 0. Set m = kq where k = c1 log
(
Rq
ε

1
δ

)
(1 + σ2)

for some ε > 0 and q = c2

(
s log n

s

)
. Set ω = c3R and Ω = [−ω, ω]. Then, MF-Sparse returns an

estimate x̂, such that

‖x− x̂‖2 ≤ Cε ,

with probability exceeding 1− δ. Here, c1, c2, c3, C are constants.

In model (2.5), the features yj are modeled in terms of complex exponentials. With only a

slight modification in the line spectral estimation stage, we can recover x from real-valued random

sine features. More precisely, these random features are given by:

y = sin(DBx) + e (2.8)

where e denotes the additive noise as defined before. If we follow an analogous approach for

estimating x, then in lieu of the least squares estimator (2.7), we have the following estimator:

ẑl = arg min
v∈Ω

‖u− sin(vt)‖22 (2.9)

= arg max
v∈Ω

(
2 |〈u, ψv〉| − ‖ψv‖22

)
, (2.10)
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Algorithm 2.2 MF-Sparse

Inputs: y, D, B, Ω, s

Output: x̂

Stage 1: Tone estimation:

for l = 1 : q do

t← D(l : q : (k − 1)q + l, l)

u← y(l : q : (k − 1)q + l)

ẑl = arg maxω∈Ω |〈y, ψω〉|
end for

ẑ ← [ẑ1, ẑ2 . . . , ẑq]
T

Stage 2: Sparse recovery

x̂← CoSaMP(ẑ, B, s)

for l = 1, . . . , q and u as defined above. Also, ψv = sin(tv) for any v ∈ Ω. We only provide

some numerical experiments for this estimator and leave a detailed theoretical analysis for future

research.

2.3.3 Demixing with Periodic Nonlinearity

Now, we use the results of previous section about signal recovery from sinusoidal link function

for the demixing of constituent components with structured sparsity. In this case, we use MF-

Sparse algorithm as a core algorithm for estimating the underlying components albeit with two

differences: first, we might have a preprocessing step before tone estimation depending on the

periodic nonlinearity. More precisely, if we use a link function except sinusoidal, we first map the

observation vector y to ỹ through a sinusoidal function and use this new observation vector ỹ as the

input to the second step, tone estimation. To give a explanation why this method works, we note

that in each period, the link function is assumed to be monotonic; as a result, for each entry of ỹ,

there is one and only one entry from y. Thus, we can use the method of recovery under sinusoidal

nonlinearity to estimate the underlying components θ̂1, θ̂2. Second, for the third stage, we invoke

STRUCT-DHT with identity link function g(x) = x instead of any regular sparse recovery method.

We call the resulting algorithm MF-STRUCT-DHT and is given in Algorithm 2.3.
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Algorithm 2.3 MF-STRUCT-DHT

Inputs: y, D, B, Ω, s, b,Φ,Ψ,η′,g

Output: θ̂1, θ̂2

Stage 1: Mapping:

if g(x) 6= sin(x) then

ỹ = sin(y)

y ← ỹ

end if

Stage 2: Tone estimation:

for l = 1 : q do

t← D(l : q : (k − 1)q + l, l)

u← y(l : q : (k − 1)q + l)

ẑl = arg maxω∈Ω |〈y, ψω〉|
end for

ẑ ← [ẑ1, ẑ2 . . . , ẑq]
T

Stage 2: Structured demixing recovery

g(x)← x

X ← B

θ̂1, θ̂2 ← STRUCT-DHT(ẑ, X, s, b,Φ,Ψ, η′, g)

By combining Theorem 2.4 and Theorem 2.5, we obtain the sample complexity of the MF-

STRUCT-DHT scheme to achieve κ-accuracy.

Theorem 2.6 (Sample complexity of MF-STRUCT-DHT). Consider the measurement model

in (2.2) without any additive noise. Assume that the nonzero entries of block diagonal matrix

D are i.i.d. random variables, distributing uniformly within the interval [−T, T ], and the rows of

B are independent subgaussian random vectors (normalized by 1
q ). Moreover, assume ‖x‖2 ≤ R

for some constant R > 0. If we set m = kq where k = c1 log
(
Rq
κ

1
δ

)
for some κ > 0, q =

O
(
s
b log n

s

)
, ω = c2R, and Ω = [−ω, ω], MF-STRUCT-DHT scheme provides an estimate β̂, such

that ‖β − β̂‖2 ≤ O(κ) , with probability at least 1 − δ. Here, c1, c2 are constants. Furthermore, if

b scales as b = Ω
(
log n

s

)
, then the sample complexity of MF-STRUCT-DHT scheme is given by

m = O(s), which is asymptotically optimal.

Note that big-Oh constant does not depend on the bounds on the derivative of the link function

since it is a identity function. In addition, if the periodic link function g is set to the sinusoidal

(complex-exponential), then the additive noise can be added to (2.2). In this case, the sample
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complexity is increased by a multiplicative factor equals to 1 + σ2 where σ2 denotes the variance

of the Gaussian noise; see (Soltani and Hegde, 2017d) for details.

2.4 Experimental Results

We compare our algorithm with existing algorithms in various scenarios. First, we start with

the set of experiments related to the stable recovery of (superposition) sparse vectors from ran-

dom sinusoidal feature map. Next, we conduct some experiments regarding the demixing of two

components with structured sparsity with both periodic and aperiodic link functions.

For the first set of experiments, we assume that our random features are computed using a

real sine link function. In other words, the features, {yj} is given by (2.8) for all j = 1, . . . , q. In

Fig. 2.1(a), we compare the probability of recovery of MF-Sparse with Gradient Hard Thresholding

(GHT), a projected-gradient descent type algorithm whose variants have proposed in (Bahmani

et al., 2013a; Yuan et al., 2014b; Jain et al., 2014). To recover x, GHT tries to minimize a specific

loss function (typically, the squared loss) between the observed random feature vector, y, and

sin(DBx) by iteratively updating the current estimate of x based on a gradient update rule, and

then projecting it into the set of s-sparse vectors via hard thresholding.

The setup for the experiment illustrated in Fig. 2.1(a) is as follows. First, we generate a synthetic

signal of length n = 214 with sparsity s = 100 such that the support is random and the values of

the signal in the support are drawn from a standard normal distribution. Then, the `2-norm of x

is adjusted via a global scaling to coincide with three different values; ‖x‖2 = 1, ‖x‖2 = 15, and

‖x‖2 = 30. We generate a matrix B ∈ Rq×n where q = 700 and n = 214 such that the entries of it

are i.i.d random variables with distribution N (0, 1√
q ). All nonzero entries of D, drl for l = 1, . . . , q

and r = 1, . . . , k are assumed to be standard normal random variables for k = 1, . . . , 8. Next, we

generate y ∈ Rm as y = sin(DBx) where m = kq. (There is no noise considered in this experiment.)

By running MF-Sparse and GHT, we obtain the estimate of x, denoted by x̂, and calculate the

(normalized) estimation error defined as ‖x̂−x‖2‖x‖2 . We repeat this process for 60 Monte Carlo trials,
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Figure 2.1: Comparison of the proposed algorithm with other algorithms. Parameters: n = 214, q =

700. (a) Probability of recovery in terms of normalized error. (b) Cosine similarity between

recovered and true signal.

and define the empirical probability of successful recovery as the fraction of simulations in which

the relative error is less than 0.05.

As we can see in Fig. 2.1(a), MF-Sparse can successfully recover x even with k = 4 number

of blocks with probability close to 1 when the norm of x is small. In this regime, i.e., ‖x‖2 being

small, both GHT and MF-Sparse display similar performance. However, GHT shows extremely

poor performance when ‖x‖2 has moderate or large value. The reason is that when the norm of x

is small, the entries of Bx are also small (i.e., the entries of DBx are close to the origin with high

probability), and the sinusoidal nonlinearity can be assumed to be almost linear. Consequently,

GHT can recover x in this regime. However, this assumption breaks down for larger values of ‖x‖2.

In Fig. 2.1(b), we repeat a similar experiment, but measure performance with a different recovery

criterion. In this scenario, we measure the cosine similarity of the estimated vector x̂ with x,

defined as x̂T x
‖x̂‖2‖x‖2 . In addition to GHT, we also compare the performance of MF-Sparse with the

single-step thresholding approach proposed by (Plan et al., 2014). The approach of (Plan et al.,

2014) only recovers the vector modulo an (unknown) scaling factor, and does not need to possess
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Figure 2.2: Comparison of matched filtering versus rootMUSIC in the first stage. Parameters:

n = 214, q = 800, k = 6.

knowledge of the nonlinearity. As illustrated in Fig. 2.1(b), the approach of (Plan et al., 2014)

has worse performance compared to two other methods. Also, GHT shows good performance only

when ‖x‖2 = 1, as expected. In contrast, MF-Sparse shows the best performance.

Next, we consider the experiment illustrated in Fig. 2.2. In this experiment, we assume a com-

plex sinusoid as the nonlinearity generating the feature map. In this scenario, we fix k = 6 (number

of diagonal blocks in matrix D), q = 800, and add i.i.d. Gaussian noise to the embeddings with

increasing variance. Our goal is to compare the matched filtering part of MF-Sparse with classical

spectral estimation techniques. Indeed, a natural question is whether we can use other spectral

estimation approaches instead of the matched filter, and whether there is any advantage in choos-

ing the elements of D randomly. We attempt to illustrate the benefits of randomness through the

experiment in Fig. 2.2. Here, we compare the relative error of MF-Sparse with an analogous algo-

rithm that we call RM-Sparse, which uses the RootMUSIC spectral estimation technique (Schmidt,

1986). For RM-Sparse, in the line spectral estimation stage, we replace random diagonal blocks

in matrix D with deterministic diagonal ones, and letting the diagonal entries of the rth block

being proportional to r. In other words, the time samples are chosen to lie on a uniform grid, as

RootMUSIC expects. As we see in Fig. 2.2, while RM-Sparse does recover the original x for very
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k = 1 k = 1(a) (b) (c)

Figure 2.3: Successful reconstruction on a real 2-D image from random sinusoidal features. (a)

Test image. (b) Reconstruction quality with k = 2 diagonal blocks. (c) Reconstruction with k = 3.

low values of noise variance, MF-Sparse outperforms RM-Sparse when the noise level increases; this

verifies the robustness of MF-Sparse to noise in the observations.

In addition, we evaluate our proposed algorithm for a real 2D image. We begin with a 512×512

test image. First, we obtain its 2D Haar wavelet decomposition and sparsify it by retaining the

s = 2000 largest coefficients. Then, we synthesize the test image based on these largest coefficients,

and multiply it by a subsampled Fourier matrix with q = 16000 multiplied with a diagonal matrix

with random ±1 entries (Krahmer and Ward, 2011). Further, we multiply this result with a block

diagonal matrix D with number of blocks k = 2, 3. Now, we apply the sin(·) function element-wise

to the resulting vector. Figure 2.3 shows the recovered image using MF-Sparse. As is visually

evident, with k = 2, the quality of the reconstructed image is poor, but k = 3 already yields a

solution close to the true image.

Finally, we present another experiment on a real 2D image. In this case, we assume that our

signal x is the superposition of two constituent signals, i.e., x = Φw + Ψz. Hence, the random

feature map is given by y = sin(DB (Φw + Ψz)). In this setting, as illustrated in Fig. 2.4(a), the

signal x is the mixture of galaxy and star images, where the constituent coefficient vectors w and

z are s-sparse signals in the DCT basis (Φ) and the canonical basis (Ψ). In this experiment, we fix

s = 1000 for both w and z. The matrices B and D are generated the same way as in the experiment
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(a) (b) (c)

Figure 2.4: Successful demixing on a real 2-dimensional image from random sinusoidal features.

Parameters: n = 512 × 512, s = 1000,m = k × q = 48000, g(x) = sin(x). Image credits: McCoy

et al. (2014).

expressed in Fig. 2.3 with q = 16000, n = 218, and k = 3. As we can see in Figs. 2.4(b) and 2.4(c),

running a variant of MF-Sparse along with the DHT algorithm (Soltani and Hegde, 2017a) for

the second stage can successfully separate the galaxy from the stars, verifying the applicability of

MF-Sparse for more generic structured inverse problems.

To show the efficacy of Struct-DHT for demixing components with structured sparsity for

aperiodic link funciotns, we numerically compare Struct-DHT with ordinary DHT (which does

not leverage structured sparsity), and also with an adaptation of a convex formulation described

in (Yang et al., 2015) that we call Demixing with Soft Thresholding (DST). We first generate true

components θ1 and θ2 with length n = 216 with nonzeros grouped in blocks with length b = 16

and total sparsity s = 656. The nonzero (active) blocks are randomly chosen from a uniform

distribution over all possible blocks.

We construct a design (observation) matrix following the construction of (Krahmer and Ward,

2011). Finally, we use a (shifted) sigmoid link function given by g(x) = 1−e−x
1+e−x to generate the

observations y. Fig 2.5 shows the the performance of the three algorithms with different number

of samples averaged over 10 Monte Carlo trials. In Fig 2.5(a), we plot the probability of successful

recovery, defined as the fraction of trials where the normalized error is less than 0.05. Fig 2.5(b)
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Figure 2.5: Comparison of DHT and MF with structured sparsity with other algorithms. (a) and

(b) Probability of recovery in terms of normalized error and Normalized error between β̂ = Φθ̂1+Ψθ̂2

and true β, respectively for g(x) = 1−e−x
1+e−x . (c) and (d) Probability of recovery in terms of normalized

error for g(x) = sin(x) and g(x) = mod (x), respectively.

shows the normalized estimation error for these algorithms. As we can observe, Struct-DHT

shows much better sample complexity (the required number of samples for obtaining small relative

error) as compared to DHT and DST.

We conduct a similar experiment for two periodic link functions: sinusoidal and sawtooth

(modulo) functions with period 2π and amplitude 1. The parameters are as before, except we set

n = 214, s = 160, and k = 4. We numerically compare MF-STRUCT-DHT scheme with the case

where we do not consider the structured sparsity, and with a convex relaxation formulation (Yang

et al., 2015). Figures 2.5(c) and (d) show the probability of success for the sinusoidal and sawtooth
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cases, respectively. Again, we get the same conclusion as in the aperiodic case: our proposed

algorithm achieves far improved sample complexity over previous existing methods that solely rely

on sparsity assumptions.

2.5 Conclusion

In this chapter, we addressed the problem of demixing from a set of limited nonlinear measure-

ments in high dimensions. Specifically, we considered two nonlinearities: aperiodic and periodic

link functions and the structured sparsity in the underlying signal components. For each of these

nonlinearities, we proposed an algorithm and support them with sample complexity analysis. As

a result of our proposed schemes, we showed that having structured sparsity assumption in the

underlying components can significantly reduce the sample complexity compared to the case where

we just have regular sparsity prior in these components. Finally, we verified our theoretical claims

with some experimental results.

2.6 Appendix. Proof of Theoretical Results

In this section, we provide the proof of the theorems in chapter 2.

Proof sketch of Theorem 2.3. The proof follows the technique used to prove Theorem 1.14 in chap-

ter 1. The main steps are as follows. Let b′ ∈ R2n = [b′1; b′2] = tk − η′∇F (tk), b = tk − η′∇JF (tk)

where J := Jk = supp(tk)∪supp(tk+1)∪supp(θ) and b′1, b
′
2 ∈ Rn (Here, θ = [θ1; θ2] denotes the true

signal). Also define tk+1 = Ps;s(b′) = [Ps(b′1);Ps(b′2)]. Now, by the triangle inequality, we have:

‖tk+1−θ‖2 ≤ ‖tk+1−b‖2+‖b−θ‖2. The proof is completed by showing that ‖tk+1−b‖2 ≤ 2‖b−θ‖2.

Finally, we use the Khintchine inequality (Vershynin, 2010) to bound the expectation of the `2-norm

of the restricted gradient function, ∇F (θ) (evaluated at the true stacked signal θ) with respect to

the support set J).

Proof sketch of Theorem 2.4. The proof is similar to the proof of Theorem 4.8 in (Soltani and

Hegde, 2017a) where we had previously derived upper bounds on the sample complexity of demixing
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by proving that F satisfies RSC/RSS with reasonable parameters. Here, the steps are essentially

the same as in (Soltani and Hegde, 2017a). The proof approach uses standard concentration

techniques to show that the Euclidean norm of a sparse vector with fixed support is preserved

with high probability under the action of the design matrix X. The proof follows by taking union

bound over the set of all sparse vectors, the size of which is given by O
(
(ns
)s

). This increases

the sample complexity by a log factor over the number of “free” parameters. The same strategy

is applicable here, except that we need to compute union bound over the set of (s, b) block-sparse

vectors. The size of this set is given by
(n
b
s
b

)
= O

(
(ns )

s
b

)
which is considerably smaller than the

set of all sparse vectors. Now, if we choose m = O
(
s
b log n

s

)
, then the objective function in (2.3)

satisfies SRSC/SRSS condition. Finally, if b scales as b = Ω
(
log n

s

)
, we obtain m = O(s) which is

an asymptotic gain over O
(
s log n

s

)
.

Proof of Theorem 2.5. Set ε′ > 0. Based on Corollary 8 of (Eftekhari et al., 2013), by setting

|T | = O( 1
ε′ ), we need k = O

(
(1 + σ2) log

(
|Ω|
ε′

1
δ

))
to obtain |ẑl − zl| ≤ ε′ with probability at least

1 − δ for each l = 1, . . . , q. Here, |Ω| denotes the radius of the feasible range for z, and appears

in the maximization problem (2.7). Observe that |Ω| = O (‖Bx‖∞). If the entries of matrix B

are chosen as stipulated in the theorem, then ‖Bx‖∞ ≤ ‖Bx‖2 . O(R) which justifies the choice

of |Ω| in the theorem. Thus, k = O
(
(1 + σ2) log

(
R
ε′

1
δ

))
. By a union bound, it follows that with

probability at least 1 − qδ, we have ‖ẑ − z‖∞ ≤ ε′. Now, we can write ẑ = z + e′ = Bx + e′

where ‖e′‖∞ ≤ ε′. Since we have used CoSaMP in the sparse recovery stage, if the choice of

q = O
(
s log n

s

)
enables us to obtain ‖x̂ − x‖2 ≤ c‖e′‖2 ≤ c

√
q‖e′‖∞ ≤ c

√
qε′ (Needell and Tropp,

2009b). (In fact, a more general guarantee can be derived even for the case when x is not exactly

s-sparse.) Now, let ε′ = O
(

ε√
q

)
to obtain the final bound on the estimation error ‖x̂−x‖2 ≤ O(ε)

with k = O
(

(1 + σ2) log
(
Rq
ε

1
δ

))
.

Proof of Theorem 2.6. The proof follows from a straightforward application of Theorem 2.1 in (Soltani

and Hegde, 2017d). According to this result, one can estimate ẑ (the estimation of z = Bβ) up

to υ-accuracy if T scales as |T | = O( 1
υ ). Under this choice for T , the required number of block

diagonal matrices in D to achieve υ accuracy for estimating z is given by k = O
(
log(Ω

υ )
)

where
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|Ω| = O(R) (see Algorithm 2.3). Now by choosing the design matrix B ∈ Rq×n, final accuracy

parameter κ as υ = O( κ√
q ), and choosing q = O

(
s
b log n

s

)
according to Theorem 2.4, the result

follows.
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CHAPTER 3. LEARNING GENERATIVE MODELS OF STRUCTURED

SIGNALS FROM THEIR SUPERPOSITION USING GANS WITH

APPLICATION TO DENOISING AND DEMIXING

1In chapters 1 and 2, we focused on the demixing problem under different setups. In particular,

we showed that having some structure on the underlying constituent components are crucial for

the success of demixing in high-dimension. As a result, we considered two important structures:

arbitrary sparse and structured sparsity in chapters 1 and 2, respectively. However, many natural

signals while they show some low-dimension structure, it is not known what exactly their structure

is. For this reason, in many applications, the underlying structures are hard-coded and are given as

prior knowledge. Although this approach has been successful in some specific domains, it is limited

in practice.

In this chapter, we are going to remove the assumption of having prior knowledge on the

underlying components through learning of the underlying structure as a part of the whole process.

To do this, we use Generative Adversarial Networks (GANs). Recently, GANs have emerged

as a popular alternative for modeling complex high dimensional distributions. In particular, we

consider the problem of learning GANs under the observation setting when the samples from

target distribution are given by the superposition of two structured components. We propose

two novel frameworks: denoising-GAN and demixing-GAN. The denoising-GAN assumes access

to clean samples from the second component and try to learn the other distribution, whereas

demixing-GAN learns the distribution of the components at the same time. Through extensive

numerical experiments, we demonstrate that proposed frameworks can generate clean samples from

unknown distributions, and provide competitive performance in tasks such as denoising, demixing,

and compressive sensing.

1The work in chapter 3 was accomplished when the author, Mohammadreza Soltani was doing his internship in
Technicolor AI Lab from May 2018 to Dec 2018.
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3.1 Introduction

In this chapter, we consider the classical problem of separating two structured signals observed

under the following linear superposition model:

Y = X +N, (3.1)

where X ∈ X and N ∈ N are the constituent signals, and X ,N ⊆ Rp denote the two structured

sets. As we mentioned in the previous chapters, in general the separation problem is inherently

ill-posed; however, with enough structural assumption on X and N , it has been established that

separation is possible. Depending on the application one might be interested in estimating only X,

which is referred to as denoising, or in recovering both X and N which is referred to as demixing.

Both demixing and denoising arise in a variety of important practical applications in the areas

of signal/image processing, computer vision, and statistics Chen et al. (2001); Elad et al. (2005);

Bobin et al. (2007); Candès et al. (2011) (please see the previous chapter for more references).

Most of the existing techniques assume some prior knowledge on the structures of X and N

in order to recover the desired component signal(s). Prior knowledge about the structure of X

and N can only be obtained if one has access to the generative mechanism of the signals or has

access to clean samples from the probability distribution defined over sets X and N . In many

practical settings, neither of these may be feasible. In this paper, we consider the problem of

separating constituent signals from superposed observations when clean access to samples from

the distribution is not available. In particular, we are given a set of superposed observations

{Yi = Xi+Ni}Ki=1 where Xi ∈ X and Yi ∈ N (X and N are not known in general) are i.i.d samples

from their respective (unknowns) distributions. In this setup, we explore two questions: First,

How can one learn prior knowledge about the individual components from superposition samples?

Second, Can we leverage the implicitly learned constituent distributions for tasks such as denoising

and demixing?
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3.1.1 Setup and Our Technique

Motivated by the recent success of generative models in high dimensional statistical inference

tasks such as compressed sensing in Bora et al. (2017, 2018), in this paper, we focus on Generative

Adversarial Network (GAN) based generative models to implicitly learn the distributions, i.e.,

generate samples from their distributions. Most of the existing works on GANs typically assume

access to clean samples from the underlying signal distribution. However, this assumption clearly

breaks down in the superposition model considered in our setup, where the structured superposition

makes training generative models very challenging.

In this context, we investigate the first question with varying degrees of assumption about the

access to clean samples from the two signal sources. We first focus on the setting when we have

access to samples only from the constituent signal class N and observations, Yi’s. In this regard,

we propose the denoising-GAN framework. However, assuming access to samples from one of

the constituent signal class can be restrictive and is often not feasible in real-world applications.

Hence, we further relax this assumption and consider the more challenging demixing problem,

where samples from the second constituent component are not available and solve it using what we

call the demixing-GAN framework.

Finally, to answer the second question, we use our trained generator(s) from the proposed GAN

frameworks for denoising and demixing tasks on unseen test samples (i.e., samples not used in

the training process) by discovering the best hidden representation of the constituent components

from the generative models. In addition to the denoising and demixing problems, we also consider a

compressive sensing setting to test the trained generator(s). Below we explicitly list the contribution

made in this paper:

1. Under the assumption that one has access to the samples from one of the constituent com-

ponent, we extend the canonical GAN framework and propose denoising-GAN framework.

This learns the prior from the training data that is heavily corrupted by additive structured

component. We demonstrate its utility in denoising task via numerical experiments.
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2. We extend the above denoising-GAN and propose demixing-GAN framework. This learns

the prior for both the constituent components from their superpositions, without access to

separate samples from any of the individual components. We demonstrate its utility in

demixing task via numerical experiments.

3.2 Application and Prior Art

To overcome the inherent ambiguity issue in problem (3.1), many existing methods have as-

sumed that the structures of sets (i.e., the structures can be low-rank matrices, or have sparse

representation in some domain (McCoy and Tropp, 2014)) X and N are a prior known and also

that the signals from X and N are “distinguishable” (Elad and Aharon, 2006; Soltani and Hegde,

2016, 2017a; Druce et al., 2016; Elyaderani et al., 2017; Jain et al., 2017). The assumption of having

the prior knowledge is a big restriction in many real-world applications. Recently, there have been

some attempts to automate this hard-coding approach. Among them, structured sparsity Hegde

et al. (2015b), dictionary learning Elad and Aharon (2006), and in general manifold learning are

the prominent ones. While these approaches have been successful to some extent, they still cannot

fully address the need for the prior structure. Over the last decade, deep neural networks have

been demonstrated to learn useful representations of real-world signals such as natural images, and

thus have helped us understand the structure of the high dimensional signals, for e.g. using deep

generative models (Ulyanov et al., 2017).

In this paper, we focus on Generative Adversarial Networks (GANs) Goodfellow et al. (2014)

as the generative models for implicitly learning the distribution of constituent components. GANs

have been established as a very successful tool for generating structured high-dimensional sig-

nals (Berthelot et al., 2017; Vondrick et al., 2016) as they do not directly learn a probability

distribution; instead, they generate samples from the target distribution(s) (Goodfellow, 2016).

In particular, if we assume that the structured signals are drawn from a distribution lying on a

low-dimensional manifold, GANs generate points in the high-dimensional space that resemble those

coming from the true underlying distribution.
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Since their inception by Goodfellow et al. (2014), there has been a flurry of works on GANs (Zhu

et al., 2017; Yeh et al., 2016; Subakan and Smaragdis, 2018) to name a few. In most of the existing

works on GANs with few notable exceptions Wu et al. (2016); Bora et al. (2018); Kabkab et al.

(2018); Hand et al. (2018); Zhu et al. (2016), it is implicitly assumed that one has access to clean

samples of the desired signal. However, in many practical scenarios, the desired signal is often

accompanied by unnecessary components. Recently, GANs have also been used for capturing of

the structure of high-dimensional signals specifically for solving inverse problems such as sparse

recovery, compressive sensing, and phase retrieval (Bora et al., 2017; Kabkab et al., 2018; Hand

et al., 2018). Specifically, Bora et al. (2017) have shown that generative models provide a good prior

to structured signals, for e.g., natural images, under compressive sensing settings over sparsity-based

recovery methods. They rigorously analyze the statistical properties of a generative model based on

compressed sensing and provide theoretical guarantees and experimental evidence to support their

claims. However, they don’t explicitly propose an optimization procedure to solve the recovery

problem. They simply suggest using stochastic gradient-based methods in the low-dimensional

latent space to recover the signal of interest. This has been addressed by Shah and Hegde (2018),

where the authors propose using a projected gradient descent algorithm for solving the recovery

problem directly in the ambient space (space of the desired signal). They provide theoretical

guarantees for the convergence of their algorithm and also demonstrate improved empirical results

over Bora et al. (2017).

While GANs have found many applications, most of them need direct access to the clean samples

from the unknown distribution, which is not the case in many real applications such as medical

imaging. AmbientGAN framework Bora et al. (2018) partially addresses this problem. In particular,

they studied various measurement models and showed that their GAN can find samples of clean

signals from corrupted observations. Although similar to our effort, there are several key differences

between ours and AmbientGAN. Firstly, AmbientGAN assumes that the measurement model and

parameters are known, which is a very strong and limiting assumption in real applications. One

of our main contributions is addressing this limitation by studying the demixing problem. Second,
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for the noisy measurement settings, AmbientGAN assumes an arbitrary measurement noise and

no corruption in the underlying component. We consider the corruption models in the signal

domain rather than as a measurement one. This allows us to study the denoising problem from

a highly structured corruption. Lastly, their approach just learns the distribution of the clean

images; however, it has not been used for the task of image denoisng (i.e., how to denoise an unseen

corrupted image). Our framework addresses this issue as well.

3.3 Background and the Proposed Idea

3.3.1 Background

Generative Adversarial Networks (GANs) are one of the successful generative models in practice

was first introduced by Goodfellow et al. (2014) for generating samples from an unknown target

distribution. As opposed to the other approaches for density estimation such as Variational Auto-

Encoders (VAEs) Kingma and Welling (2013), which try to learn the distribution itself, GANs are

designed to generate samples from the target probability density function. This is done through a

zero-sum game between two players, generator, G and discriminator, D in which the generator G

plays the role of producing the fake samples and discriminator D plays the role of a cop to find the

fake and genuine samples. Mathematically, this is accomplished through the following min-max

optimization problem:

min
θg

max
θd

Ex∼Dx [log(Dθd(x))]Ez∼Dz [log(1−Dθd(Gθg(z)))], (3.2)

where θg and θd are the parameters of generator networks and discriminator network respectively,

and Dx denotes the target probability distribution , and Dz represents the probability distribution of

the hidden variables z ∈ Rh, which is assumed either a uniform distribution in [−1, 1]h, or standard

normal. One can also use identity function instead of log(.) function in the above expression. The

resulting formulation is called WGAN (A. et al., 2017). It has been shown that if G and D have

enough capacity, then solving optimization problem (3.2) by alternative stochastic gradient descent

algorithm guarantees the distribution Dg at the output of the generator converges to Dx. Having
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N ∈ N

Dθd
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Gθg2Z2

+ Dθd

Observed Samples
{y1, y2, . . . , yn}

0: fake
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(a) (b)

Figure 3.1: The architecture of proposed GANs. (a) denoising-GAN. (b) demixing-GAN.

discussed the basic setup of GANs, next we present the proposed modifications to the basic GAN

setup that allows for usage of GANs as a generative model for denoising and demixing structured

signals.

3.3.2 denoising-GAN

Our idea is inspired by AmbientGAN due to Bora et al. (2018) in which they used a regular GAN

architecture to solve some inverse problems such as inpainting, denoising from unstructured noise,

and so on. In particular, assume that instead of clean samples, one has access to a corrupted version

of the samples where the corruption model is captured by a known random function fN (n) where N

is a random variable. For instance, the corrupted samples can be generated via just adding noise,

i.e., Y = X + N . The idea is to feed discriminator with observed samples, yi’s (distributed as Y )

together with the output of generator G which is corrupted by model fN (n). Our denoising-GAN

framework is illustrated in Figure 3.1(a). This framework is similar to one proposed in Ambient

GAN paper; however, the authors did not consider denoising task from structured superposition

based corruption. In the experiment section, we show that denoising-GAN framework can generate
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clean samples even from structured corruption. Now we use the trained denoising-GAN framework

for denoising of a new test corrupted image which has not been used in the training process. To

this end, we use our assumption that the components have some structure and the representation

of this structure is given by the last layer of the trained generator, i.e., X ∈ G
θ̂g

2. This observation

together with this fact that in GANs, the low-dimension random vector z is representing the hidden

variables, leads us to this point: in order to denoise a new test image, we have to find a hidden

representation, giving the smallest distance to the corrupted image in the space of G
θ̂g

(Shah and

Hegde, 2018; Bora et al., 2017). In other words, we have to solve the following optimization problem:

ẑ = arg min
z
‖u−G

θ̂g
(z)‖22 + λ‖z‖22, (3.3)

where u denotes the corrupted test image. The solution of this optimization problem provides the

(best) hidden representation for an unseen image. Thus, the clean image can be reconstructed by

evaluating G
θ̂g

(ẑ). While optimization problem (3.3) is non-convex, we can still solve it by running

gradient descent algorithm in order to get a stationary point3.

3.3.3 Theoretical Insights for the denoising-GAN

Here, we revisit some theoretical arguments pioneered by (Bora et al., 2018). As authors

have discussed in this paper in Lemma 5.1 and Theorem 5.2, so long as there is a bijection map

from the probability distribution of observation space (Y -domain) to the probability distribution

of signal space (X-domain), and by choosing optimal discriminator as D =
Dy

Dy+Dg , then it is

guaranteed that the generator, G is optimal if and only if Dg = Dy. Here, Dg and Dy denote

the probability distribution of generator and observation (corrupted signal), respectively. This can

be proved by arguments given in the original GAN paper by Goodfellow et al. (2014). Authors

in Bora et al. (2018) showed that the uniqueness map assumption is satisfied in some special cases.

Since the probability distribution of the sum is given by convolution, from equation (3.1), we have:

Dy = Dx ∗ Dn, where DN denotes the distribution of the corruption part, N which we have access

2Gθ̂g (.) denotes the trained generator network with parameter θ̂g.
3While we cannot guarantee the stationary point is a local minimum, but the empirical experiments show that

gradient descent (implemented by backpropagation) can provide a good quality result.
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to the samples from it, and ∗ denotes the convolution operator. If we take Fourier transform

(or using the characteristic function, Φ(.)) from this equation, we obtain: Φy = Φx.Φn. As a

result, Dx = Φ−1
x (

Φy
Φn

). This means that the probability distribution of signal domain is determined

uniquely (due to one-to-one relation between the probability distribution and the characteristic

function). For Dx = Φ−1
x (

Φy
Φn

) to be well defined a straightforward condition is that the Φn is

non-zero almost everywhere. This condition is satisfied for many corruption distributions. For

example, consider the case the true signal is distributed as Gaussian, and the corruption samples

are drawn from uniform distribution between [−1, 1] the Φn is non-zero almost everywhere. This

is also satisfied for a n-dimensional random sparse vector with k non-zero entries such that there

is non-zero probability of each set of k-entries and the joint-distribution of non-zero k-entries is

Gaussian with full-rank covariance matrices. This covers many structured noises.

3.3.4 demixing-GAN

Now, we go through our main contribution, demixing. Figure 3.1(b) shows the GAN architec-

ture, we are using for the purpose of separating or demixing of two structured signals form their

superposition. As illustrated, we have used two generators and have fed them with two random

noise vectors z1 ∈ Rh1 and z2 ∈ Rh2 according to a uniform distribution defined on a hyper-cube,

where h1, h2 are less than the dimension of the input images. We also assume that they are in-

dependent of each other. Next, the output of generators are summed up and the result is fed to

the discriminator along with the superposition samples, y′is. In Figure 3.1(b), we just show the

output of each generator after training for an experiment case in which the mixed image consists

of 64 MNIST binary image LeCun and Cortes (2010) (for X part) and a second component con-

structed by random sinusoidal (for N part) (please see the experiment appendix for the details of

this specific experiments). Somewhat surprisingly, this architecture based on two generators can

produce samples from the distribution of each component after enough number of training itera-

tions. We note that this approach is fully unsupervised as we only have access to the mixed samples

and nothing from the samples of constituent components is known. As mentioned above, this is in



www.manaraa.com

82

sharp contrast with AmbientGAN and our previous structured denoising approach. As a result, the

demixing-GAN framework can generate samples from the second components (for example random

sinusoidal, which further can be used in the task of denoising where the corruption components are

sampled from highly structured sinusoidal waves). Now similar to the denoising-GAN framework,

we can use the trained generators in Figure 3.1(b), for demixing of the constituent components for

a given test mixed image which has not been used in training. Similarly, we can solve the following

optimization problem:

ẑ1, ẑ2 = arg min
z1,z2

‖y −G
θ̂g1

(z1)−G
θ̂g2

(z2)‖22 + λ1‖z1‖22 + +λ2‖z2‖22, (3.4)

where u denotes the test mixed image.

Now, each component can be estimated by evaluating G
θ̂g1

(ẑ1) and G
θ̂g2

(ẑ2)4. Similar to the

previous case, while the optimization problem in (3.4) is non-convex, we can still solve it through

block coordinate gradient descent algorithm, or in a alternative minimization fashion. We note

that in both optimization problems (3.3) and (3.4), we did not project on the box sets on which

z1 and z2 lie on. Instead we have used regularizer terms in the objective functions (which are not

meant as projection step). We empirically have observed that imposing these regularizers can help

to obtain good quality images in our experiment; plus, they may help that the gradient flow to be

close in the region of interest by generators. This is also used in Bora et al. (2017). Finally, we

have provided some theoretical intuitions for the demixing-GAN in the appendix.

3.4 Numerical Experiments

In this section, we present various experiments showing the efficacy of the proposed frameworks

(depicted in Figure 3.1(a) and Figure 3.1(b)) in three different setups. First, we will focus on the

denoising from structured corruption both in training and testing scenarios. Next, we focus on

demixing signals from structured distributions. Finally, we explore the use of generative models

from the proposed GAN frameworks in compressive sensing setup. In all the following experiments,

we did our best for choosing all the hyper-parameters. We defer the details of experiments setup,

4Gθ̂g1
(.) and Gθ̂g2

(.) denote the first and second trained generator with parameter θ̂g1 and θ̂g2 , respectively.
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the complementary experiments on the compressive sensing scenario, and experiments on the other

datasets (F-MNIST (Han et al., 2017), combination of F-MNIST and MNIST, SVHN Netzer et al.

(2011), and Quick-Draw (Qui, a)) to the appendix.

3.4.1 Structured Corruption Models

For all the experiments in this section, we have used the network architectures for discriminator

and generator(s) similar to the one proposed in DCGAN Radford et al. (2015). DCGAN is a CNN

based GAN consists of convolutional layers followed by batch normalization (except the last layer of

the generator and first layer of discriminator). We have also considered the binary MNIST dataset

as the clean ground-truth component. For the corruption part, we have used two structured noise

models similar to Chen and Srihari (2014). In the first one, we generate random vertical and

horizontal lines and add them to the dataset. The second structured noise is constructed based on

random sinusoidal waves in which the amplitude, frequency, and phase are random numbers. We

define the level of corruption (lc) as the number of sinusoidal or lines added to the original image.

We note that both of these corruption models are highly structured. The clean MNIST images

along with these two corruption models have been shown in the left panel of Figure 3.2 and 3.3,

respectively.

(a) (b) (c)

Figure 3.2: Left panel: (a). Clean binary MNIST image. (b). Corrupted image with random

horizontal and vertical lines. (c). Corrupted image with random sinusoidal waves.
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Corrupted Input 1st epoch 2nd epoch 5th epoch 64th epoch

Figure 3.3: Evolution of output samples by the generator for fixed z. Top row is for random

horizontal and vertical corruption. Bottom row is for random sinusoidal corruption.

3.4.2 Denoising from Structured Corruption – Training

In this section, we use GAN architecture illustrated in Figure 3.1(a) for removing of the struc-

tured noise. The setup of the experiment is as follows: we use 55000 images with size 28 × 28

corrupted by either of the above corruption models5. The resulting images, yi’s are fed to the

discriminator. We also use hidden random vector z ∈ R100 drawn from a uniform distribution in

[−1, 1]100 for the input of the generator. During the training, we use 64 mini-batches along with the

regular loss function in the GAN literature, stated in problem (3.2). The optimization algorithm

is set to Adam optimizer, and we train discriminator and generator one time in each iteration. We

set the number of epochs to 64. To show the evolution of the quality of output samples by the

generator, we fix an input vector z and save the output of the generator at different times during

the training process. The right panel of Figure 3.3 shows the denoising process for both corruption

models. The top row denotes the denoising from random vertical and horizontal lines, while the

bottom row corresponds to the random sine waves.

As we can see, the GAN used in estimating the clean images from structured noises is able to

generate clean images after training of generator and discriminator. In the next section, we use our

trained generator for denoising of new images which have not been used during the training.

5We set level of corruption 1 for sinusoidal and 2 for the vertical and horizontal lines in the training of the
denoising-GAN.
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3.4.3 Denoising from Structured Corruption – Testing

Now we test our framework with test corrupted images for both models of corruption introduced

above. For reconstructing of the clean images, we solve the optimization problem in (3.3) to obtain

solution ẑ. Then we find the reconstructed clean images by evaluating G
θ̂g

(ẑ). In Figures 3.4, we

have used the different level of corruptions for both of the corruption models. In the top right, we

vary the level of corruption from 1 to 5 with random sines. The result of G
θ̂g

(ẑ) has been shown

below of each level of corruption. In the top left, we have a similar experiment with various level of

vertical and horizontal corruptions. Also, we show the denoised images in the below of the corrupted

ones. As we can see, even with heavily corrupted images (level corruption equals to 5), GAN is

able to remove the corruption from unseen images and reconstruct the clean images. In the bottom

row of Figure 3.4, we evaluate the quality of reconstructed images compared to the corrupted ones

through a classification task. That is, we use a pre-trained model for MNIST classifier which has

test accuracy around %986. We feed the MNIST classifier with both denoised (output of denoising-

GAN) and corrupted images with a different level of corruptions. For the ground truth labels, we

use the labels corresponding to the images before corruption. One interesting point is that when

the level of corruption increases the denoised digits are sometimes tweaked compared to the ground

truth. That is, in pixel-level, they might not close to the ground truth; however, semantically they

are the same. We have also plot the reconstruction error per pixel (normalized by 16 images) for

various lc’s.

3.4.4 Demixing of Structured Signals – Training

In this section, we present the results of our experiments for demixing of the structured compo-

nents. To do this, we use the proposed architecture in Figure 3.1(b). We first present our experiment

with MNIST dataset, and then we show the similar set of experiments with Fashion-MNIST dataset

(F-MNIST) (Han et al., 2017). This dataset includes 60000 training 28×28 gray-scale images with

6The architecture comprises of two initial convolutional layers along with max-pooling followed by a fully connected
layer and a dropout on top of it. Relu is used for all the activation functions and a soft-max function is used in the
last layer.
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Figure 3.4: The Performance of the trained generator for various levels of corruption (lc) in denois-

ing of unseen images. Top row: Ground-truth digits together with corrupted digits with random

sines with a level of corruption from 1 to 5 and denoised digits using denoised-GAN. Bottom row:

Classification accuracy of pre-trained MNIST classifier for both corrupted and denoised digits along

with the reconstruction error per-pixel.

10 labels. The different labels denote objects, including T-shirt/top, Trouser, Pullover, Dress, Coat,

Sandal, Shirt, Sneaker, Bag, and Ankle boot.

3.4.4.1 Experiments on MNIST Dataset

We start the experiments with considering four sets of constituent components. In the first

two, similar to the denoising case, we use both random sinusoidal waves and random vertical and

horizontal lines for the second constituent component. The difference here is that we are interested

in generating of the samples from the second component as well. In Figure 3.6, we show the training

evolution of two fixed random vectors, z1 and z2 in R100 in the output of two generators. In the
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Figure 3.5: The Performance of trained generator for various level of corruption (lc) in denoising

of unseen images. Top row: Ground-truth digits together with corrupted digits with vertical

and horizontal lines with a level of corruption from 1 to 5 and denoised digits using denoised-

GAN. Bottom row: Classification accuracy of pre-trained MNIST classifier for both corrupted and

denoised digits along with the reconstruction error per-pixel.

top panel, we have added one random sinusoidal waves to the clean images. As we can see, our

proposed GAN architecture can learn two distributions and generate samples from each of them.

In the bottom panel, we repeat the same experiment with random vertical and horizontal lines as

the second component (two random vertical and two random horizontal lines are added to the clean

images). While there is some notion of mode collapse, still two generators can produce the samples

from the distribution of the constituent components.

In the second scenario, our mixed images comprise of two MNIST digits from 0 to 9. In this

case, we are interested in learning the distribution from which each of the digits is drawn. The

Top panel in Figure 3.7 shows the evolution of two fixed random vectors, z1 and z2. As we can see,
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after 32 epoch, the output of the generators would be the samples of MNIST digits. Finally, in the

last scenario, we generate the mixed images as the superposition of digits 1 and 2. In the training

set of MNIST dataset, there are around 6000 samples from each digits of 1 and 2. We have used

these digits to form the set of superposition images. The bottom panel of Figure 3.7 shows the

output of two generators, which can learn the distribution of the two digits. The interesting point is

that these experiments show that each GAN can learn the existing digit variety in MNIST training

dataset, and we typically do not see mode collapse, which is a major problem in the training of

GANs (Goodfellow, 2016).

3.4.4.2 Experiments on F-MNIST Dataset

In this section, we illustrate the performance of the proposed demixing-GAN for another F-

MNIST dataset. This dataset includes 60000 training 28×28 gray-scale images with 10 labels. The

different labels denote objects, including T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt,

Sneaker, Bag, and Ankle boot. Similar to the experiment with MNIST dataset being illustrated

in Figure 3.7, we train the demixing-GAN where we have used InfoGAN Chen et al. (2016) archi-

tecture for the generators. The architecture of the generators in InfoGAN is very similar to the

DCGAN discussed above with the same initialization procedure. The dimension of input noise to

the generators is set to 62. We have also used the same discriminator in DCGAN. Figure 3.8 shows

the output of two generators, which can learn the distribution of dress and bag images during 21

epochs.

3.4.5 Demixing of Structured Signals – Testing

Similar to the test part of denoising, in this section, we test the performance of two trained

generators in a demixing scenario for the mixed images, which have not been seen in the training

time. Figure 3.9 shows our third experiment in which we have illustrated the demixing on three

different input mixed images. Here, we have compared the performance of demixing-GAN with

Independent component analysis (ICA) method (Hoyer et al., 1999). In the top and middle rows
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Table 3.1: Numerical Evaluation of the results in Figure 3.9 according to the Mean Square Error

(MSE) and Peak Signal-to-Noise ratio (PSNR) criteria between the corresponding components in

the superposition model.

MSE (1st Part) MSE (2nd Part) PSNR (1st Part) PSNR (2nd Part)

First Row 0.04715 0.03444 13.26476 14.62877

Second Row 0.04430 0.03967 13.53605 14.01344

Third Row 0.05658 0.05120 12.47313 12.90715

Forth Row 0.08948 0.10203 10.48249 9.91264

Table 3.2: Numerical Evaluation of the results in Figure 3.10 according to the Mean Square Error

(MSE) and Peak Signal-to-Noise ratio (PSNR) criteria between the corresponding components in

the superposition model.

MSE (1st Part) MSE (2nd Part) PSNR (1st Part) PSNR (2nd Part)

First Row 0.16859 0.12596 7.73173 8.99763

Second Row 0.05292 0.03304 12.76368 14.80992

Third Row 0.13498 0.11758 8.69732 9.29655

Fourth Row 0.12959 0.08727 8.87432 10.59132

Fifth Row 0.18250 0.12221 7.38733 9.12906

of Figure 3.9, we consider the mixed images generated by adding a digit (drawn from MNIST

test dataset) and a random sinusoidal. Then the goal is to separate (demix) these two from the

given superimposed image. To do this, we use GAN trained for learning the distribution of digits

and sinusoidal waves (the top panel of Figure 3.6) and solve the optimization problem in (3.4)

through an alternative minimization fashion. As a result, we obtain ẑ1 and ẑ2. The corresponding

constituent components is then obtained by evaluating G
θ̂g1

(ẑ1) and G
θ̂g2

(ẑ2). In Figure 3.9, the

first two columns denote the ground-truth of the constituent components. The middle one is the

mixed ground-truth, and the last two show the recovered components using demixing-GAN and

ICA. In the last row, digits 1 and 2 drawn from the MNIST test dataset are added to each other
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and we apply the GAN trained for learning the distribution of digits 1 and 2 (bottom panel in

Figure 3.7). As we can see, our proposed GAN can separate two digits; however, ICA method fails

in demixing of two components. In addition, Table 3.1 has compared numerically the quality of

recovered components with the corresponding ground-truth ones through mean square error (MSE)

and Peak Signal-to-Noise Ratio (PSNR) criteria.

3.4.5.1 Demixing of F-MNIST – Testing

In this section, we evaluate the performance of trained demixing-GAN on the F-MNIST dataset.

In Figure 3.10, we have illustrated an experiment similar to the setup in section 3.4.5. The first

two columns in Figure 3.10 denote two objects from F-MNIST test dataset as the ground-truth

components. The third column is the ground-truth mixed image, and the last two columns show

the recovered constituent components. The first row uses the generator trained for only two objects

for 20 epochs. The second row uses the generator trained for all 10 objects for 20 epochs. The

third and fourth rows use the same generator trained for only two objects for 30 epochs. The last

row shows the result of demixing with ICA method. We have implemented ICA using Scikit-learn

module (Pedregosa et al., 2011). As we can see, ICA fails to separate the components (images of

F-MNIST) from each other, while the proposed demixing-GAN can separate the mixed images from

each other. However, the estimated image components are not exactly matched to the ground-truth

ones (first two columns). This has been shown through numerical evaluation according to MSE

and PSNR in Table 3.2.

Finally, as an attempt to understand the condition under which the demixing-GAN is failed, we

empirically investigated the role of two aspects pf demixing-GAN. First, it seems that the hidden

space (z-space) of the generators for characterizing the distribution of the constituent components

play an essential role in the success/failure of the demixing-GAN. Second the incoherent hidden

structures in the components in the generator space. We investigate these observations through

some numerical experiments in section 3.6.8 in the appendix.
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3.5 Conclusion

In this chapter, we considered the GANs framework for learning the structure of the constituent

components in a superposition observation model. We empirically showed that it is possible to

implicitly learn the underlying distribution of each component and use them in the downstream

task such as denoising, demixing, and sparse recovery. We also investigate the conditions under

which the proposed demixing framework fails through extensive experimental simulations and some

theoretical insights.

3.6 Appendix. Overview

3.6.1 Appendix A. Some Theoretical Intuitions about The demixing-GAN

Recall that the superposition model is given by Y = X + N , and Dy, Dx and Dn denote the

distribution of Y,X, and N , respectively. Let G1(z1)
∆
= Gθg1 (z1) ∼ Dg1 and G2(z2)

∆
= Gθg2 (z2) ∼

Dg2 . Also assume that (z1, z2) ∼ Dz1,z2 denotes the joint distribution of the hidden random vectors

with marginal probability as Dzi for i = 1, 2. We note that in demixing setting there are not

samples from the component N as opposed to the denoising scenario. Now we have the following

mini-max loss as (3.2):

min
G1,G2

max
D
L(G1, G2, D) = Eu∼Dy log(D(u)) + E(z1,z2)∼Dz1,z2 log(1−D(G1(z1) +G(z2))). (3.5)

Following the standard GAN framework, for the fixed G1 and G2, we have:

L(G1, G2, D) =

∫
u
(Dy(u)log(D(u)) +DG(u)log(1−D(u)))du,

where DG = Dg1 ∗ Dg2 . Hence, the optimal discriminator is given by D∗ = Dx∗Dn
Dx∗Dn+Dg1∗Dg2

since

Y = X + N and the fact that Dy and Dg are the pdf and defined in [0, 1]. This means that the

global optimal of problem (3.5) is achieved iff Dx ∗ Dn = Dg1 ∗ Dg2 ( ∗ denotes the convolution

operator). However, this condition is generally an ill-posed equation. That is, in general, Dx 6= Dg1

and Dn 6= Dg2 . In the best case, we can have hope to uniquely determine the distributions up

to a permutation (similar thing is also true for the ICA method). This is the point actually we
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need some notion of incoherence between two constituent structures, X , and N . So, the question

is this under what incoherent condition, we can have a well-conditioned equation? According to

our previous discussion in the denoising case, even if we somehow figure out the right incoherent

condition, Dx is uniquely determined by Dn if the Fourier transform of Dn is non-zero. While

we currently do not have a right answer for the above question, we conjecture that in addition

to the incoherence issue in the signal domain, the hidden space (z-space) in both generators play

an important role to make the demixing problem possible. We investigate this idea and the other

things empirically at the end of the appendix.

3.6.2 Appendix B. Detail of Experiments

Here, we give some more details about the initialization of the generators we have used for the

MNIST and F-MNIST experiments in sections 3.4.4 and 3.4.5. As we mentioned earlier, we have

used the same architecture based on the DCGAN for both of the generators used in the demixing-

GAN for MNIST dataset. In particular, the generators include three layers: the first two layers are

fully connected layers with Relu activation function. We have not used any batch-normalization (as

opposed to the original DCGAN). Also, the weights in these fully connected layers are initialized

according to the random normal distribution with standard deviation equals to 0.02. We have

also used zero initialization for the biases. The third layer includes a transposed convolution layer

with filters size of which are set to 5 and stride to 2. We have initialized these filters according

to the random normal distribution with standard deviation equals to 0.02. Relu nonlinearity has

also been used after the transposed convolution operation. We have not used any max-pooling

in this architecture. Similarly, the discriminator comprises two convolution layers with leaky-rely

activation function followed by a fully connected layer without any max-pooling. The weights

in these convolution layers have been initialized based on the truncated normal distribution with

standard deviation equals to 0.02. The fully connected layer is initialized as before. Finally, we fed

two generators with i.i.d random noise vector with entries uniformly drawn from [−1, 1]. For the

F-MNIST experiments, we have used a similar architecture to the InfoGAN generator (Chen et al.,
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2016). The architecture of the generators is similar to the previous case except that the transposed

convolution in the third layer has 128 filters with size 4×4 and stride 2, while the previous DCGAN

has 64 filters with size 5×5 and stride 2. The discriminators are the same. For the ICA experiment,

we simulate the mixing process simalr to Anirudh et al. (2018) using mixing matrix with entries

drawn from a truncated random normal distribution, i.e., Wij ∼ N (−0.5, 0.5) for i, j = 1, 2, allowing

for negative weights. Hence, the final mixed observation is given by Y = XW T where X denotes

the constituent component matrix (source matrix) with 2 columns (number of components) and

with number of rows equal to the size of input mixed image (28× 28).

3.6.3 Appendix C. Compressive Sensing

In this section, we present results in the compressed sensing setting. The goal here is to

understand the quality of generative models that can be learned under the structured corruption

in denoising-GAN and demixing-GAN architectures. To this end, we test the capability of the

proposed GANs as the generative model for natural images. The experimental setup is similar

to the reconstruction from Gaussian measurement experiment for MNIST data reported in Bora

et al. (2017). In particular, we assume the following observation model by a random sensing matrix

A ∈ Rm×p with m < p under structured corruption by N as follows:

Y = A(X +N), (3.6)

where the entries of A are i.i.d Gaussian with zero mean and variance 1
m . For a given generator

model G
θ̂
, we solve the following inference problem:

min
z
‖Y −AG

θ̂
(z)‖22 + λ‖z‖22, (3.7)

where the generator G
θ̂

is taken from various generator networks. For this experiment, we select the

signalX randomly from MNIST test dataset, andN from random sinusoidal corruption with various

number of waves. We compare generator models learned from clean MNIST images, i.e., generator

model obtained from denoising-GAN and demixing-GAN framework. Both the generator models

learned from denoising-GAN and demixing-GAN were trained under wave corruption model. For
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demixing-GAN, we select appropriate GAN by manually looking at the output of generators and

choosing the one that gives MNIST like images as output. We also compare our approach to LASSO

as MNIST images are naturally sparse. As reported in Bora et al. (2017). for this experiment the

regularization parameter λ was set as 0.1 as it gives the best performance on validation set. For

solving the inference problem in (3.7), we have used ADAM optimizer with step size set to 0.01.

Since the problem is non-convex, we have used 10 random initialization with 10000 iterations. We

choose the one gives the best measurement error.

The results of this experiment are presented in Figure 3.11 where we report per-pixel reconstruc-

tion error on 25 images chosen randomly from the test dataset for two different corruption levels.

The plot on the left panel is obtained when the signal is corrupted with 2 random waves, whereas

the right plot corresponds to the corruption with 4 random waves. In the both figures, we ob-

serve that with corruption, the performance of LASSO significantly degrades. The generator from

demixing-GAN improves the performance over LASSO. Generator obtained from denoising-GAN

performs comparably to the vanilla GAN. This experiment establishes the quality of the generative

models learned from GANs as the prior. The comparable performance of denoising GAN with

vanilla GAN shows that meaningful prior can be learned even from heavily corrupted samples.

3.6.4 Appendix D. Experiments on F-MNIST Dataset

In this section, we present more experiment on F-MNIST dataset. In particular, we construct

the mixed images by adding randomly the images in all classes in FMNIST training dataset. As

mentioned before, there are 10 different categories in this dataset. Figure 3.12 shows the evolution

of two fixed random vectors, z1 and z2 drawn from [−1, 1]62. As we can see, after 21 epoch, the

output of the generators would be the samples of F-MNIST objects. We also generate mixed

images as the superposition of two objects, dress and bag images. In the training set of the F-

MNIST dataset, there are around 6000 dress and bag images. We have used these images to form

the set of superposition images.
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3.6.5 Appendix E. Experiments on Both MNIST and F- MNIST Datasets

In this section, we explore the performance of demixing-GAN when the superposed images

comprise the sum of a digit 8 from MNIST dataset and dress from the F-MNIST dataset. The

experiment for this setup has been illustrated in Figure 3.13. Since our goal is to separate dress

from the digit 8, for the first generator, we have used the InfoGAN architecture being used in

the experiment in section 3.6.4 and similarly the DCGAN architecture for the second generator as

section 3.4.4. As a result, the input noise to the first generator is drawn uniformly from [−1, 1]62

and uniformly from [−1, 1]100 for the second generator. Figure 3.13 shows the evolution of output

samples by two generators for fixed z1 and z2. As we can see, after 21 epoch, the first generator is

able to generate dress samples and the second one outputs samples of digit 8.

3.6.5.1 Demixing both MNIST and F-MNIST – Testing

Similar to the previous Testing scenarios, in this section, we evaluate the performance of the

demixing-GAN in comparison with ICA for separating a test image which is the superposition of a

digit 8 drawn randomly from MNIST test dataset and dress object drawn randomly from F-MNIST

test dataset. Figure 3.14 shows the performance of demixng-GAN and ICA method. As we can

see, ICA totally fails to demix the two images from each other, whereas the demixing-GAN is able

to separate digit 8 very well and to some extend the dress object from the input superposed image.

MSE and PSNR values for the first component using ICA recovery method is given by 0.40364 and

3.94005, respectively. Also, MSE and PSNR for the first component using ICA recovery method is

given by 0.15866 and 7.99536, respectively.

3.6.6 Appendix F. Experiment on Quick-Draw Dataset

In this section, we present our demixing framework in another dataset, Quick-Draw dataset (Qui,

a) released by Google recently. The Quick Draw Dataset is a collection of 50 million drawings cat-

egorized in 345 classes, contributed by players of the game Quick, Draw! (Qui, b). For this section,

we select 5 classes out of 345 possible categories, including airplane, animal migration, face, flower,
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and The Eiffel Tower. Also, for each class, we consider 16000 images of size 28 × 28. Figure 3.15

shows the experiment for all the classes. Similar to MNIST and F-MNIST, we construct the train-

ing set by adding all the images randomly from 5 categories. To run this experiment, we feed each

generator with random vectors z1 and z2 drawn uniformly from [−1, 1]64. As illustrated in the

figure 3.15, after 31 epochs two generators can generate samples from the distribution of all five

classes. From this experiment, it seems that Quick-Draw dataset is more complicated than MNIST

or perhaps F-MNIST as it takes more time for demixing-GAN to be able to output resemble samples

to the original Quick-Draw objects.

Next, we consider only two objects, face, and flower in the Quick Draw Dataset. As a result,

the input mixed images are the superposition of different faces and flowers. Figure 3.16 shows the

evolution of the random vectors z1 and z2 (drawn uniformly from [−1, 1]64). As we can see, after

31 epochs, one generator can produce various kind of faces, while the other one generates different

shapes of flowers.

Finally, we consider a more challenging scenario in which the constituent components in the

mixed images are just airplane shapes. That is, we randomly select the airplane shapes from

16000 images in the training set, and add them together to construct the input mixed images.

We have been noticed that in the 16000 images of the airplane shapes, in general, there are two

structures. One is related to the airplanes having been drawn by the players in the game Quick,

Draw more simply and somehow flat (they are mostly similar to an ellipse with or without wings),

while the second one consists the more detailed shapes (they have the tail and maybe with different

orientation).

Figure 3.17 depicts the performance of demixing-GAN for this setup. One surprising point is

that while both components in the superposition are drawn from one class (e.g., airplane shapes),

the demixing-GAN is still able to demix the hidden structure in the airplane distribution. Thus, we

think that just having the same distribution for both of the constituent components is not neces-

sarily a barrier for demixing performance. We guess that somehow different features of the shapes

drawn from the same distribution makes demixing possible by forcing the incoherence between the
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components. As we can see, after 31 epochs, both generators can learn two mentioned structures,

and regarding two structures, they can cluster the shape of airplanes in two types.

3.6.7 Appendix G. Experiment on SVHN Dataset

Now we present some experimental results with colorful images. Specifically, we use the

demixing-GAN with SVHN dataset Netzer et al. (2011). The Street View House Numbers (SVHN)

training dataset is a collection of almost 70000 images, containing images of digits from 1 to 10.

SVHN dataset is significantly more challenging to learn its distribution as it is noisy, including

images of various resolution and distracting digits (Chen et al., 2016). In our experiment, we

use the character level representation of SVHN which are pre-processed 32 × 32 colorful images.

Figure 3.18 illustrates a similar experiment which we mentioned before. The mixed images also

comprise the superposition of two randomly chosen digits from the SVHN training dataset. In

addition, the dimension of the hidden space (i.e., z-space) for selecting random vectors z1 and z2

is set to 100. As expected, it takes more time compared to the other datasets for demixing-GAN

to explore the distribution of the digits in SVHN. The authors of (Chen et al., 2016) pointed out

that InfoGAN can capture two components in SVHN: Lighting and Context, where the context

represents the central digit in an image. In demixing-GAN, we can see that one generator tries

to learn the samples of SVHN dataset, the context part, while the other one mostly captures the

lightning of the digits.

3.6.8 Appendix H. Failure of The demixing-GAN

In this section, we empirically explore our observation about the failure of the demixing-GAN.

As we discussed briefly in section 3.4.5, we focus on two spaces, hidden space (z-space) and signal

or generator space (the output of generator) in discovering the failure of demixing-GAN.

Our first observation concerns the z-space. We observe that if the hidden vectors form z-space

of two generators are aligned to each other, then the two generators cannot output the samples in

the signal space, representing the distribution of the constituent components. To be more precise,
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in Figure 3.19, we consider separating digits 8 and 2 from their superpositions similar to the

experiment in the bottom panel of Figure 3.7. However, here, we feed both generators with the

same vector, i.e., z1 = z2 in each batch (this is considered as the extreme case where precisely the

hidden variables equal to each other) and track the evolution of the output samples generated by

both generators. As we can see even after 21 epochs, the generated samples by both generators are

an unclear combination of both digits 2 and 8, and they are not separated clearly as opposed to the

case when we feed the generators with i.i.d random vectors. We also repeat the same experiment

with two aligned vectors z1 and z2, i.e., z2 = 0.1z1, Figure 3.20 shows the evolution of the output

samples generated by both generators for this setup. As shown in this experiment, two generators

cannot learn the distribution of digits 8 and 2. While we do not currently have a mathematical

argument for this observation, we conjecture that the hidden space (z-space) is one of the essential

pieces in the demixing performance of the proposed demixing-GAN. We think that having (random)

independent or close orthogonal vector z’s for the input of each generator is a necessary condition

for the success of learning of the constituent components distribution, and consequently demixing

of them. Further investigation of this line of study is indeed an interesting research direction, and

we defer it for future research.

In addition to the hidden space, here we design some experiments in the generator space that

reveals the condition under which the demixing is failed. In particular, we consider the airplane

images in Quick-Draw dataset. To construct the input mixed images, we consider randomly chosen

images of the airplane from 16000 images as the first component. Then, the second component

is constructed by rotating exactly the same one in the first components in a counterclockwise

direction. We consider 5 different rotations, 0◦, 10◦, 30◦, 60◦, 90◦. Five samples of such images

are depicted in Figure 3.21. This experiment is sort of similar to the one in Figure 3.17 in which

we have seen that demixing-GAN can capture the internal structure in the airplane dataset by

clustering it into two types.

Now we perform the demixing-GAN on these datasets. Figure 3.22 illustrated the the evolu-

tion of the generators for various rotation degrees. The top panel shows the case exactly both
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components are the same shape. Obviously, the demixing, in this case, is impossible as there is

no hope to distinguish the components from each other. Going down in the figure3.21, we have

different rotation settings. As we can see, once we move forward to the 90◦, both generators can

capture the samples from the airplane distribution; however, as not clear as the case in which we

had added the airplane shapes randomly for the input mixed images. We conjecture that changing

the orientation of one component can make it incoherent to some extent from the other component,

and consequently makes the demixing possible. In other words, we see again when two images show

some distinguishable structures (in this case, the first one has 0-oriented object and the other is

the same one but rotated 90◦), then the demixing-GAN can capture these structures.
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Mixed images 1st epoch 2nd epoch 5th epoch 64th epoch

Figure 3.6: Evolution of output samples by two generators for fixed z1 and z2. The top panel shows

the evolution of the two generators in different epochs where the mixed images comprise of digits

and sinusoidal. The first generator is learning the distribution of MNIST digits, while the second

one is learning the random sinusoidal waves. The bottom panel shows the same experiment with

random horizontal and vertical lines as the second components in the mixed images.
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Mixed images 1st epoch 6th epoch 15th epoch 32th epoch

Figure 3.7: Evolution of output samples by two generators for fixed z1 and z2. The top panel shows

that each generator is learning the distribution of one digit out of all 10 possible digits. The mixed

images comprise two arbitrary digits between 0 to 9. The bottom panel panel shows a similar

experiment where the mixed images comprise only digits 1 and 2.
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Mixed images 1st epoch 6th epoch 15th epoch 21th epoch

Figure 3.8: Evolution of output samples by two generators for fixed z1 and z2. The mixed images

comprise only two objects, dress, and bag in training F-MNIST dataset. One generator produces the

samples from dress distribution, while the other one outputs the samples from the bag distribution.

demixing-GAN

demixing-GAN

ICA

1st Part 2nd Part Mixed Image Est. 1st Part Est. 2nd Part

Figure 3.9: The performance of trained generators for demixing of two constituent components.

The first two columns are the ground-truth components. The third column is the ground-truth

mixed image and the last two columns denote the recovered components. The first row uses the same

generator trained for only one digit (drawn from MNIST test dataset) and a random sinusoidal.

The second row uses the generator trained only for digits 1 and 2. The last row shows the result

of demixing with ICA method.
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demixing-GAN

demixing-GAN

demixing-GAN

demixing-GAN

ICA

1st Part 2nd Part Mixed image Est. 1st Part Est. 2nd Part

Figure 3.10: The performance of trained generators for demixing of two constituent components.

The first two columns are the ground-truth components. The third column is the ground-truth

mixed image and the last two columns denote the recovered components. The first row uses the

generator trained for only two objects for 20 epochs. The second row uses the generator trained

for all 10 objects for 20 epochs. The third and fourth rows use the same generator trained for only

two objects for 30 epochs. The last row shows the result of demixing with ICA method.
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Figure 3.11: Performance of Different GANs in Compressive Sensing Experiments.

Mixed images 1st epoch 6th epoch 15th epoch 21th epoch

Figure 3.12: Evolution of output samples by two generators for fixed z1 and z2. The mixed images

comprise two arbitrary objects drawn from 10 objects from training F-MNIST dataset. Each

generator outputs the samples from the distribution of all 10 possible objects.
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Mixed images 1st epoch 6th epoch 15th epoch 21th epoch

Figure 3.13: Evolution of output samples by two generators for fixed z1 and z2. The mixed images

comprise only two objects, dress, and bag in training F-MNIST dataset. One generator produces

the samples from digit 8 distribution, while the other one outputs the samples from the dress

distribution.

demixing-GAN

ICA

1st Part 2nd Part Mixed image Est. 1st Part Est. 2nd Part

Figure 3.14: The performance of trained generators for demixing of two constituent components.

The first two columns are the ground-truth components. The third column is the ground-truth

mixed image and the last two columns denote the recovered components. The first row uses the

generator trained through demixing-GAN. The second row shows the result of demixing with ICA

method.
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Mixed images 1st epoch 6th epoch 13th epoch 31th epoch

Figure 3.15: Evolution of output samples by two generators for fixed z1 and z2. The mixed

images comprise two arbitrary objects drawn from 10 objects in training Quick-Draw dataset.

Each generator outputs the samples from the distribution of all 5 objects.

Mixed images 1st epoch 6th epoch 13th epoch 31th epoch

Figure 3.16: Evolution of output samples by two generators for fixed z1 and z2. The mixed

images comprise only two objects, face, and flower in training Quick-Draw dataset. One generator

produces the samples from dress distribution, while the other one outputs the samples from the

bag distribution.



www.manaraa.com

107

Mixed images 1st epoch 6th epoch 13th epoch 31th epoch

Figure 3.17: Evolution of output samples by two generators for fixed z1 and z2. The mixed images

comprise only airplane object, randomly drawn from the training Quick-Draw dataset. The top

generator produces mostly the samples from simpler and flat airplanes, while the bottom one

outputs the samples from the more detailed airplane shapes.

Mixed images 1st epoch 6th epoch 17th epoch 39th epoch

Figure 3.18: Evolution of output samples by two generators for fixed z1 and z2. The mixed

images comprise two arbitrary digits drawn from 10 digits in SVHN training dataset. The top

generator outputs the samples, representing the lightning condition of the digits, while the bottom

one generates samples from the distribution of all digits.
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Mixed images 1st epoch 6th epoch 15th epoch 21th epoch

Figure 3.19: Failure of the demixing. Evolution of output samples by two generators for z1 = z2.

The mixed images are the superposition of digits 2 and 8.

Mixed images 1st epoch 6th epoch 15th epoch 21th epoch

Figure 3.20: Failure of the demixing. Evolution of output samples by two generators for z1 = 0.1z2.

The mixed images are the superposition of digits 2 and 8.

(a) (b) (c) (d)

Figure 3.21: Mixed images of airplanes with different orientation, (a). Mixture of two 0◦ rotated

images (b). Mixture of 0◦ and 30◦ rotated images rotated images (c). Mixture of 0◦ and 60◦ rotated

images rotated images (d). Mixture of 0◦ and 90◦ rotated images rotated images
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0◦-rotation 1st epoch 5th epoch 13th epoch 31th epoch

30◦-rotation 1st epoch 5th epoch 13th epoch 31th epoch

60◦-rotation 1st epoch 5th epoch 13th epoch 31th epoch

90◦-rotation 1st epoch 5th epoch 13th epoch 31th epoch

Figure 3.22: Failure of the demixing. Evolution of output samples by two generators. Top: Mixture

of two 0◦ rotated images. Second Top: Third Top: Mixture of 0◦ and 30◦ rotated images rotated

images. Fourth Top: Mixture of 0◦ and 60◦ rotated images rotated images. Bottom: Mixture

of 0◦ and 90◦ rotated images rotated images.
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CHAPTER 4. FAST LOW-RANK MATRIX ESTIMATION WITHOUT

THE CONDITION NUMBER

In this chapter, we focus on another low-dimensional structure, low-rank matrices which is very

common in many real scenarios. We specifically study the general problem of optimizing a convex

function F (L) over the set of p × p matrices, subject to rank constraints on L. However, existing

first-order methods for solving such problems either are too slow to converge, or require multiple

invocations of singular value decompositions. On the other hand, factorization-based non-convex

algorithms, while being much faster, and has a provable guarantee, require stringent assumptions

on the condition number of the optimum. In this chapter, we provide a novel algorithmic framework

that achieves the best of both worlds: as fast as factorization methods, while requiring no depen-

dency on the condition number. We instantiate our general framework for three important and

practical applications; nonlinear affine rank minimization (NLARM), Logistic PC, and precision

matrix estimation (PME) in probabilistic graphical model. We then derive explicit bounds on the

sample complexity as well as the running time of our approach and show that it achieves the best

possible bounds for both cases. We also provide an extensive range of experimental results for all

of these applications to support our proposed algorithm.

4.1 Introduction

In this chapter, we consider the following optimization problem:

min
L

F (L) s.t. rank(L) ≤ r∗, (4.1)

where F (L) : Rp×p → R is a convex smooth function defined over matrices L ∈ Rp×p with rank

r∗ � p.1 This problem has recently received significant attention in machine learning, statis-

1For convenience, all our matrix variables will be of size p × p, but our results extend seamlessly to rectangular
matrices.
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tics, and signal processing (Chen and Wainwright, 2015; Udell et al., 2016). Several applications

abound, including affine rank minimization (Recht et al., 2010b; Tu et al., 2016; Jain et al., 2010),

matrix completion (Candès and Recht, 2009), and collaborative filtering (Jain et al., 2013). Prob-

lem (5.4) also appears in the context of learning shallow polynomial neural networks (Livni et al.,

2014; Soltani and Hegde, 2017c), and rigorous solutions to (5.4) sheds light on developing a non-

asymptotic algorithmic understanding of training such networks. In most of the above applications,

F (L) is typically assumed to be a least-squares loss function. For instance, in machine learning,

the squared loss between the pair of observed and predicted outputs would be a natural choice.

But there are many cases in which other loss functions are used. For example, in neural network

learning, the loss function is usually chosen according to the negative cross-entropy between the

distribution of the fitting model and distribution of the training samples (Goodfellow et al., 2016).

As another example, in graphical model, the goal is usually to estimate the covariance/precision

matrix. In this case, Negative Log-Likelihood (NLL) function, defining on the distribution of output

samples given the input ones is the common choice for F (L). As an example in signal processing,

one-bit matrix completion (Davenport et al., 2014) or related logistic PCA (Park et al., 2016a)

problem are the ones either the observation model is a nonlinear of L∗, or F (L) is modeled as the

maximum likelihood function. In all these cases, we encounter with the mathematical optimization

problem in the form of (5.4).

From the computational perspective, the traditional approach is to adopt first-order optimiza-

tion for solving (5.4). Several different approaches (with theoretical guarantees) have been proposed

in recent years. The first group of these methods are related to the convex methods in which the

rank constraint is relaxed by the nuclear norm proxy (Fazel, 2002), resulting the overall convex

problem which can be solved by off-the-shelf solvers. While these methods achieve the best sample

complexity, i.e., the minimum required number of samples for achieving the small estimation error,

they are computationally expensive and the overall running time can be slow if p is very large.

To alleviate this issue, several non-convex methods have been proposed based on using non-convex

regularizer instead of nuclear norm, factorizing the low-rank matrix, and singular value projection
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(SVP). Non-convex regularizer methods (Quanming et al., 2017) can approximate the rank function

better than nuclear norm, and have less computational complexity per iteration. The factorized

methods (Chen and Wainwright, 2015; Bhojanapalli et al., 2016a; Tu et al., 2016) are computa-

tionally very appealing since they reduce the number of variables from p2 to pr by writing L as

L = UV T where U, V ∈ Rp×r and r � p, and removing the rank constraint from problem (5.4).

The singular value projection algorithms (Jain et al., 2010, 2014) use SVD as the projection step

within the gradient descent framework in each iteration, and they are more robust to the spectral

properties of the underlying matrix. However, all of these methods suffer from one or several of the

following problems: their convergence rate is slow (they have sub-linear convergence), e.g. convex

methods, or non-convex regularizer approaches; the computational cost per iteration is high, e.g.,

SVP-type algorithms; or they have stringent assumptions on the spectral properties (such as the

condition number) of the solution to (5.4), e.g., factorized methods.

Our goal in this chapter is to propose an algorithm to alleviate the above problems simul-

taneously. Specifically, we seek an algorithm that exhibits linearly fast convergence,

computationally efficient per iteration, and at the same time, robust to ill-conditioned

problems.

4.1.1 Our Contributions and Techniques

Here, we propose and analyze an algorithm for solving problems of the form (5.4) for objective

functions F that satisfy the commonly-studied Restricted Strongly Convex/Smooth (RSC/RSS)

conditions. We summarize our contribution in this chapter as follows:

Linear convergence. We propose a fast non-convex algorithm for solving of the optimization

problem in (5.4). Specifically, we provide rigorous analysis to show that our proposed algorithm

enjoy global linear convergence (no matter how it is initialized). Our algorithm enjoys fast per-

iteration running time as well.
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No spectral assumptions. We show that our proposed algorithm does not depend on strin-

gent assumptions on the condition number (the ratio of the maximum to minimum nonzero singular

value) of the solution to (5.4).

Provable guarantee on the optimal sample complexity regime Our algorithm is based

on using the idea of approximate projection, and we show that its linear convergence is guaranteed

in the optimal sample complexity regime as opposed to the previous work by (Becker et al., 2013).

No limitations on strong convexity/smoothness constants. In a departure from the

majority of the matrix optimization literature, our algorithm succeeds under no particular assump-

tions on the extent to which the objective function F is strongly smooth/convex. (See below for

details).

Instantiating in three applications. We instantiate our framework to three important

and practical applications; Nonlinear Affine Rank Minimization (NLARM), Logistic PCA, and

Precision Matrix Estimation (PME) in probabilistic graphical model. In addition, for NLARM,

we show that by choosing an appropriate design operator A (defined later), we can reduce the

computational complexity of calculating the gradient in each step significantly which makes the

overall algorithm a promising approach for very large size nonlinear matrix sensing problem.

Putting together these ingredients, we get the first condition-free, almost-linear time algorithm

for solving problems of the form (5.4).

Techniques. Our approach is an adaptation of the algorithm proposed in (Jain et al., 2014),

which is a projected gradient-type algorithm. Specifically, they propose performing gradient de-

scent, followed by thresholding the largest singular values of the matrix variable. The key idea of

this work is that each gradient update is projected onto the space of matrices with rank r that

is larger than r∗, the rank parameter in Problem (5.4). This trick can greatly alleviate situations

where the objective function exhibits poor restricted strong convexity/smoothness properties; more

generally, the overall algorithm can be applied to ill-posed problems. However, their algorithm re-

quires performing a full exact singular value decomposition (SVD) after each gradient descent step.
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This results in poor overall running time, as the per-iteration cost is cubic (O(p3)) in the matrix

dimension.

Our method resolves this issue by replacing the exact SVD with a gap-independent approximate

low-rank projection, while still retaining the idea of projecting onto a larger space. To establish

soundness of our approach, we establish a property about (approximate) singular value thresholding

that extends recent new results proved in (Shen and Li, 2016; Li et al., 2016). In particular, we prove

a new structural result for approximate projection onto the space of rank-r matrices, showing that

each projection step in our algorithm is nearly non-expansive, thus enjoying similar convergence

guarantees as convex projected gradient descent. To be more precise, we know that for any matrix

A and B, the best rank-r approximation of A satisfies the following:

‖Hr(A)−B‖ ≤ 2‖A−B‖,

where Hr(A) returns the best rank approximation of A. This bound is very pessimistic and the

upper bound is never achieved (Shen and Li, 2016; Becker et al., 2013). In this work, we prove

a new structural result of the above hard-thresholding for approximate projection, achieving the

small coefficient close to 1 if we use the projection onto a larger subspace. In particular, we prove:

‖T (A)−B‖F ≤
(

1 +
2√

1− ε

√
r1√

r − r1

)
‖A−B‖F ,

where rank(B) = r1 and T implements the approximate projection onto the set of matrices with

rank-r with ε accuracy. So by increasing r, we are recovering the non expansive property of the

convex projection where the coefficient is exactly equals to 1.

Integrating the above result gives linear convergence of the proposed algorithm for a very broad

class of objective functions F (L). Since we use approximate low-rank projections, the running time

of the projection step is (almost) linear in the size of the matrix if r∗ is sub-linear in n.

4.1.2 Stylized Applications

We also instantiate our framework to three practical applications. First we consider a prob-

lem that we call it as nonlinear affine rank minimization (NLARM). Formally, we consider an
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observation model akin to the Generalized Linear Model (GLM) (Kakade et al., 2011):

y = g(A(L∗)) + e,

where g denotes a nonlinear link function, A denotes a linear measurement (or observation) op-

erator, which we formally define later, and e ∈ Rn denotes an additive noise vector. The goal is

to reconstruct L∗ from y, given that L∗ is of rank at most r∗. For this application, we derive the

sample complexity of our algorithm, calculate the running time, and analyze the statistical error

rate. More specifically, we define an specific objective function tailored to g and verify that it is

strongly convex/smooth; moreover, we show that Õ(pr∗) samples is enough to estimate L∗ up to

the noise level, and this matches those of the best available methods. Our technique for deriving

sample complexity is based the ε-net for the set of low-rank matrices, and designing sensing op-

erator A based on Johnson-Lindenstrauss lemma. In addition, the running time to estimate L∗

scales as Õ(p2r∗) which is nearly linear with the size of L∗ and independent of all other spectral

properties of L∗ (such as its condition number). This marks a strict improvement over all other

comparable existing methods.

Second we discuss about the Logistic PCA problem (Park et al., 2016a) in which we observe a

binary matrix Y with entries belong to {0, 1} such that the mean of each Yij is given by P (Yij =

1|Lij) = σ(L∗ij) where σ(x) = 1
1+exp(−x) . The goal is to estimate an underlying low-rank matrix L∗

by trying to find the solution of following optimization problem:

F (L) = −
∑
i,j

(
Yij log σ(Lij) + (1− Yij) log(1− σ(Lij))

)
.

Finally, we propose our third instantiation in which our goal is to estimate a precession matrix

L∗ based on the the samples Xi ∈ Rp for i = 1, . . . , n. In this setup, the objective function F (L) is

given by NLL of the distribution of output samples given the input ones. Our technique for verifying

RSC/RSS conditions of NLL is according to a key observation which states F (L) is globally strongly

convex, and when restricted to any compact psd cone, it also satisfies strong smoothness condition.

As a result of our analysis, we bound RSS/RSC constants of F (L) which is a non-trivial task and

considerably different from the the existing methods and consequently additional effort is required
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due to the several properties of the true precision matrix L∗. As a byproduct of this analysis, we

show that with n = O(pr) independent samples, the proposed algorithm return an estimate up to

constant error. Moreover, we show that the our algorithm provide the best empirical performance

(in terms of estimation error) among all considered methods in the precession matrix estimation

problem.

4.2 Prior Art

Optimization problems with rank constraints arise in several different applications; a few ex-

amples include robust PCA (Candès et al., 2011; Chandrasekaran et al., 2009; Netrapalli et al.,

2014; Yi et al., 2016), covariance/precision matrix estimation using graphical models (Hsieh et al.,

2014; Chandrasekaran et al., 2010), phase retrieval (Candes et al., 2015, 2013; Netrapalli et al.,

2013), finding the square root of a PSD matrix (Jain et al., 2015), dimensionality reduction tech-

niques (Johnson, 2014; Schein et al., 2003), video denoising (Ji et al., 2010), subspace clustering (Liu

et al., 2013), face recognition (Yang et al., 2017) and many others. Beyond specific applications,

solving (5.4) as efficiently as possible has attracted considerable interest in the optimization com-

munity. In general, most solution approaches can be categorized in four groups. In the first one,

the non-convex rank constraint is relaxed into a nuclear norm penalty, which results in a convex

problem and can be solved by off-the-shelf solvers such as SDP solvers (G. and B., 2014), singular

value thresholding and its accelerated versions (Recht et al., 2010b; Cai et al., 2010; Goldstein et al.,

2014), and active subspace selection methods (Hsieh and Olsen, 2014). While convex methods are

well-known, their usage in the high dimensional regime is prohibitive (incurring cubic, or worse,

running time).

The second group includes non-convex methods, replacing the rank constraint with a more

tractable non-convex regularizer instead of the nuclear norm. To mention a few of them, smoothly

clipped absolute deviation (SCAD) (Fan and Li, 2001), and iteratively re-weighted nuclear norm

(IRNN) algorithm (Lu et al., 2016). While these approaches can reduce the computational cost per
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iteration, from p3 to p2r, they exhibit sub-linear convergence, and are quite slow in high dimensional

regimes; see (Quanming et al., 2017) for details.

Methods in the third class try to solve the non-convex optimization problem (5.4) based on the

factorization approach of (Burer and Monteiro, 2003). In these algorithms, the rank-r matrix L is

factorized as L = UV T , where U, V ∈ Rp×r. Using this idea removes the difficulties caused by the

non-convex rank constraint; however, the objective function is not convex anymore. Nevertheless,

under certain conditions, such methods succeed and have recently gained in popularity in the ma-

chine learning literature, and several papers have developed provable linear-convergence guarantees

for both squared and non-squared loss functions (Tu et al., 2016; Bhojanapalli et al., 2016a; Park

et al., 2016b; Chen and Wainwright, 2015; Zheng and Lafferty, 2015; Jain et al., 2013).

Such methods are currently among the fastest available. However, the major drawback is that

they require a careful spectral initialization that usually involves one or multiple full singular value

decomposition. More crucially, their convergence rate depends heavily on the condition number

(i.e., the ratio of the largest to the smallest non-zero singular values) as well as other spectral

properties of the optimum. As a consequence, if the problem is somehow poorly conditioned, their

sample complexity and running time can blow up by a significant amount.

The last class of methods also includes non-convex methods. Unlike the factorized methods,

they do not factorize the optimization variable, L, but instead use low-rank projections within

classical gradient descent. This approach, also called singular value projection (SVP) or iterative

hard thresholding, was introduced by (Jain et al., 2010) for matrix recovery from linear mea-

surements, and was later modified for general M-estimation problems with well-behaved objective

functions (Jain et al., 2014). These methods require multiple invocations of exact singular value

decompositions (SVDs). While their computational complexity can be cubic in p, and consequently

very slow in very large-scale problems, these methods do not depend on the condition number of

optimum, and in this sense are more robust than factorized methods. A similar algorithm to SVP

type algorithms was proposed by (Becker et al., 2013) for the squared loss case, which replaces the

exact SVD with approximate one. However, their theoretical guarantees is very restrictive which
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overshadows the usage of any approximate SVD method instead of the exact one. That is, in

the regime of optimal sample complexity, i.e., n = O(pr), their approximate projection should be

applied onto a matrix with rank as the order of p in order to have convergence. This restriction

overshadows the usage of any approximate SVD method instead of the exact one. Furthermore,

we have to mention that while the idea of projecting on the larger set is theoretically backed up

in (Jain et al., 2014), and also this chapter, the use of it within the factorized approach is just

practically observed, and currently there is no theory for it (Bhojanapalli et al., 2016a).

In addition to the above algorithms, recently some stochastic gradient methods for low-rank

matrix recovery have been proposed (Wang et al., 2017; Li et al., 2016). The goal of these methods

are to reduce the cost of calculating the full gradient in each iteration which typically requires

O(np2) operations. For instance, (Wang et al., 2017) has combined the factorized method with

SVRG algorithm (Johnson and Zhang, 2013), while the authors in (Li et al., 2016) have used

the SVP algorithm along with SVRG or SAGA (Defazio et al., 2014) algorithms. However, these

algorithms suffer from either heavy computational cost due to the initialization and projection

step, or having stringent condition on the RSC/RSS conditions. Similar to the factorized method

proposed in (Tu et al., 2016), the method in (Wang et al., 2017) requires some multiple SVDs

for the initialization step, and its total running time depends the condition number of the ground

truth matrix. In addition, to establish the linear convergence, one needs no limitations on the

RSC/RSS conditions. On the other hand, the method in (Li et al., 2016) is robust to ill-condition

problem and it uses the idea of projection on the set of matrices with larger rank than the true

one. However, each iteration of it needs SVD and it may overshadow the benefit of it in alleviating

the computation of the gradient.

Finally, we have to mention a non iterative algorithm for recovery of the low-rank matrices

from a set of nonlinear measurements proposed by (Plan et al., 2017), While this approach does

not need to know the nonlinearity of the link function, its recovery performance is limited, and

we can only recover the the Frobenius/spectral norm of the solution of the optimization problem

up to a scaling ambiguity. There are several other methods which we cannot mention al of then
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here. Please refer the recent survey (Davenport and Romberg, 2016) and references therein for a

comprehensive discussion.

All the aforementioned algorithms suffer from one (or more) of the following issues: expen-

sive computational complexity, slow convergence rate, and troublesome dependency on spectral

properties of the optimum. In this chapter, we resolve these problems by a renewed analysis of

approximate low-rank projection algorithms, and integrate this analysis to obtain a new algorithm

for optimizing general convex loss functions with rank constraints.

4.3 Algorithm and Analysis

In this section, we propose our algorithm and provide the theoretical results to support it.

Before that we introduce some notations and definitions.

4.3.1 Preliminaries

We denote the minimum and maximum eigenvalues of matrix S̄ by Sp and S1, respectively. We

use ‖A‖2 and ‖A‖F for spectral norm and Frobenius norm of a matrix A, respectively. We show

the maximum and minimum eigenvalues of a matrix A ∈ Rp×p as λ1(A), λp(A), respectively. In

addition, for any subspace W ⊂ Rp×p, we denote PW as the orthogonal projection operator onto

it. Our analysis will rely on the following definition (Negahban et al., 2011; Jain et al., 2014):

Definition 4.1. A function f satisfies the Restricted Strong Convexity (RSC) and Restricted

Strongly Smoothness (RSS) conditions if for all L1, L2 ∈ Rp×p such that rank(L1) ≤ r, rank(L2) ≤ r,

we have:

mr

2
‖L2 − L1‖2F ≤ f(L2)− f(L1)− 〈∇f(L1), L2 − L1〉 ≤

Mr

2
‖L2 − L1‖2F , (4.2)

where mr and Mr are called the RSC and RSS constants respectively.

Let Ur as the set of all rank-r matrix subspaces, i.e., subspaces of Rp×p that are spanned by

any r atoms of the form uvT where u, v ∈ Rp are unit-norm vectors. We will exclusively focus on

low-rank approximation algorithms that satisfy the following two properties:
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Algorithm 4.1 MAPLE

Inputs: rank r, step size η, approximate tail projection T
Outputs: Estimates L̂

Initialization: L0 ← 0, t← 0

while t ≤ T do

Lt+1 = T
(
Lt − η∇F (Lt)

)
t← t+ 1

end while

Return: L̂ = LT

Definition 4.2 (Approximate tail projection). Let ε > 0. Then, T : Rp×p → Ur is a approximate

tail projection algorithm if for all L ∈ Rp×p, T returns a subspace W = T (L) that satisfies:

‖L− PWL‖F ≤ (1 + ε)‖L− Lr‖F ,

where Lr is the optimal rank-r approximation of L in the Frobenius norm.

Definition 4.3 (Per-vector approximation guarantee). Let A ∈ Rp×p and Ar denotes its best rank-

r approximation. Suppose there is an algorithm that returns B = ZZTA which is the projection of

A onto the column space of matrix Z with orthonormal vectors z1, z2, . . . , zr, Then, this algorithm

satisfies the per-vector approximation guarantee if

|uTi AATui − ziAAT zi| ≤ εσ2
r+1,

where ε > 0 and ui’s are the eigenvectors of A.

Here, we focus on the randomized Block Krylov SVD (BKSVD) method for implementation of

T . This algorithm has been proposed by (Musco and Musco, 2015) which satisfies both of these

properties with probability at least 99/100. However, one can alternately use a recent algorithm

called LazySVD (Allen-Zhu and Li, 2016) with very similar properties. For constant approximation

factors ε, the asymptotic running time of these algorithms is given by Õ(p2r), independent of any

spectral properties of the input matrix; however, BKSVD ensures slightly stronger per vector

approximation guarantee.
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As we discussed above, our goal is to solve the optimization problem (5.4). The traditional

approach is to perform projected gradient descent:

Lt+1 = Pr
(
Lt − η∇F (Lt)

)
,

where Pr denotes an exact projection onto the space of rank-r matrices, and can be accomplished

via SVD. However, for large p, this incurs cubic running time and can be very challenging. To

alleviate this issue, one can instead attempt to replace the full SVD in each iteration with a tail-

approximate low-rank projection; it is known that such projections can computed in O(p2 log p)

time (Clarkson and Woodruff, 2017).

This is precisely our proposed algorithm, which we call Matrix Approximation for Low-rank

Estimation (MAPLE), is described in pseudocode form as Algorithm 4.1. This algorithm is struc-

turally very similar to (Jain et al., 2014; Becker et al., 2013). However, the proof of (Jain et al.,

2014) requires exact low-rank projections, and (Becker et al., 2013) is specific to least-squares loss

functions and with somewhat weak guarantees. In addition, very recent work of (Hegde et al.,

2016), proposing approximate subspace-IHT algorithm which uses two step projection for general

model of union subspaces, and is limited for squared loss function. Here we show that for the

specific case of low-rank matrix recovery, one outer projection (T operator in Algorithm 4.1) is

sufficient for estimating the solution of the optimization problem (5.4).

A key point is that our algorithm uses approximate low-rank projections with parameter r

such that r ≥ r∗. As we show in Theorem 4.5, the combination of using approximate projection,

together with choosing a large enough rank parameter r, enables efficient solution of problems of

the form (5.4) for any (given) restricted convexity/smoothness constants M,m. Specifically, this

ability removes any upper bound assumptions on the ration M
m , which have appeared in several

recent related works, such as (Bhojanapalli et al., 2016a). While the output matrix of MAPLE

may have larger rank than r∗, one can easily post-process it with an final hard thresholding step

in order to enforce the result to have exactly rank r∗.

In Algorithm 4.1, the choice of approximate low-rank projections is flexible, as long as the ap-

proximate tail and per-vector approximation guarantee are satisfied. We note that tail-approximate
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low-rank projection algorithms are widespread in the literature (Clarkson and Woodruff, 2013;

Mahoney and Drineas, 2009; Rokhlin et al., 2009); however, per-vector approximation guarantee

algorithms are less common. As will become clear in the proof of Theorem 4.5, the per-vector

guarantee is crucial in our analysis.

In our implementation of MAPLE, we invoke the BKSVD method for low-rank approximation

mentioned above2. Assuming BKSVD as the approximate low-rank projection of choice, we now

prove a key structural result about the non-expansiveness of T . This result, to the best of our

knowledge, is novel and generalizes a recent result reported in (Shen and Li, 2016; Li et al., 2016).

We defer the full proof of all theoretical results to the appendix.

Lemma 4.4. For r > (1 + 1
1−ε)r

∗ and for any matrices L,L∗ ∈ Rp×p with rank(L∗) = r∗, we have

‖T (L)− L∗‖2F ≤
(

1 +
2√

1− ε

√
r∗√

r − r∗

)
‖L− L∗‖2F ,

where T : Rp×p → Ur denotes the approximate tail projection defined in Definition 5.2 and ε > 0

is the corresponding approximation ratio.

proof sketch. The proof follows the approach of (Li et al., 2016) where it is first given for sparse hard

thresholding, and then is generalized to the low-rank case using Von Neumann’s trace inequality.

First define θ = [σ2
1(L), σ2

2(L) . . . , σ2
r (L)]T . Also let θ∗ = [σ2

1(L∗), σ2
2(L∗) . . . , σ2

r∗(L
∗)]T , and θ′ =

T (θ). Also, let supp(θ∗) = I∗, supp(θ) = I, supp(θ′) = I ′, and θ′′ = θ − θ′ with support I ′′. Now

define new sets I∗ ∩ I ′ = I∗1 and I∗ ∩ I ′′ = I∗2 with restricted vectors to these sets as θI∗1 = θ∗1,

θI∗2 = θ∗2, θ′I∗1 = θ1∗, θ′′I∗2 = θ2∗ such that |I∗2| = r∗∗, and θmax = ‖θ2∗‖∞. The proof continues

by upper bounding the ratio of
‖θ′−θ∗‖22−‖θ−θ∗‖22

‖θ−θ∗‖22
in terms of r, r∗, r∗∗ and by using the inequality

θ̂min ≥ (1−ε)θmax where θ̂ denotes the vector of approximate eigenvalues returned back by T . This

inequality is resulted by invoking the per-vector guarantee property of T . Now we can obtain the

desired upper bound and get the final claim.

2We note that since the BKSVD algorithm is randomized while the definitions of approximate tail projection
and per-vector approximation guarantee are deterministic. Fortunately, the running time of BKSVD depends only
logarithmically on the failure probability, and therefore an additional union bound argument is required to precisely
prove algorithmic correctness of our method.
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We now leverage the above lemma to provide our main theoretical result supporting the effi-

ciency of MAPLE.

Theorem 4.5 (Linear convergence of MAPLE). Assume that the objective function F (L) satisfies

the RSC/RSS conditions with parameters M2r+r∗ and m2r+r∗. Define ν =
√

1 + 2√
1−ε

√
r∗√
r−r∗ . Let

Jt denotes the subspace formed by the span of the column spaces of the matrices Lt, Lt+1, and L∗,

the solution of (5.4). In addition, assume that r > C1
1−ε

(
M2r+r∗
m2r+r∗

)4
r∗ for some C1 > 2. Choose

step size as η as 1−
√
α′

M2r+r∗
≤ η ≤ 1+

√
α′

m2r+r∗
where α′ =

√
α−1√

1−ε
√
α−1+2

for some α = Θ(r/r∗) > 1. Then,

MAPLE outputs a sequence of estimates Lt such that:

‖Lt+1 − L∗‖F ≤ ρ‖Lt − L∗‖F + νη‖PJt∇F (L∗)‖F , (4.3)

where ρ = ν
√

1 +M2
2r+r∗η

2 − 2m2r+r∗η < 1.

In particular, Theorem 4.5 guarantees the linear convergence to L∗ up to the gradient of L∗.

We note that the contraction factor ρ is not affected by extent to which the objective function

F (L) is strongly smooth/convex. In other words, no matter how large the ratio M
m is, its effect is

balanced by ν through choosing large enough r. Also, the quality of the estimates in Theorem 4.5

is upper-bounded by the gradient term ‖PJt∇F (L∗)‖F in (4.3), within each iteration. In below, we

instantiate the general optimization problem (5.4) to three problems of NLARM, logistic PCA, and

PME. In NLARM and PME, L∗ denotes the ground truth which we are looking for to estimate; as

a result, the gradient term in (4.3) represents the statistical aspect of MAPLE. IN these problems,

we give an upper bound on this term. Also, we show that the loss function F (L) satisfies RSC/RSS

conditions in these three instantiations, and consequently, derive the sample complexity and the

running time of MAPLE.

4.3.2 Nonlinear Affine Rank Minimization (NLARM)

In this section, we formally state our first problem. Consider the nonlinear observation model

y = g(A(L∗)) + e, where A is a linear operator, A : Rp×p → Rn parametrized by n full rank

matrices, Ai ∈ Rp×p such that (A(L∗))i = 〈Ai, L∗〉 for i = 1, . . . , n. Also, e denotes an additive
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Table 4.1: Summary of our contributions, and comparison with existing methods for NLARM ,

κ denotes the condition number of L∗, and ϑ denotes the final optimization error. Also, SC and

RT denote Sample Complexity and Running Time, respectively. Here we have presented for each

algorithm the best known running time result.

Algorithm SC RT Bounded M
m

Convex (Recht et al., 2010b) Õ(pr∗) O( p3

√
ϑ

) Yes

Non-convex Reg (Quanming et al., 2017) Õ(pr∗) O(p2r∗

ϑ ) Yes

Factorized (Bhojanapalli et al., 2016a) Õ(pr∗) O(p2(r∗ + log p)κ2 log( 1
ϑ ) + p3) Yes

SVP (Jain et al., 2014) Õ(pr∗) O(p3 log( 1
ϑ )) No

MAPLE Õ(pr∗) O(p2r∗ log p log(1
ϑ )) No

subgaussian noise vector with i.i.d., zero-mean entries that is also assumed to be independent of A

(see appendix for more details). If g(x) = x, we have the well-known matrix sensing problem for

which a large number of algorithms have been proposed. The goal is to estimate the ground truth

matrix L∗ ∈ Rp×p for more general nonlinear link functions.

In this chapter, we assume that link function g(x) is a differentiable monotonic function, satis-

fying 0 < µ1 ≤ g′(x) ≤ µ2 for all x ∈ D(g) (domain of g). This assumption is standard in statistical

learning (Kakade et al., 2011) and in nonlinear sparse recovery (Negahban et al., 2011; Yang et al.,

2015; Soltani and Hegde, 2017a). Also, as we will discuss below, this assumption will be helpful for

verifying the RSC/RSS condition for the loss function that we define as follows. We estimate L∗

by solving the optimization problem :

min
L

F (L) =
1

n

n∑
i=1

Ω(〈Ai, L〉)− yi〈Ai, L〉

s.t. rank(L) ≤ r∗,

(4.4)

where Ω : R → R is chosen such that Ω′(x) = g(x). 3 Due assumption on the derivative of g, we

see that F (L) is a convex function (actually strongly convex), and can be considered as a special

case of general problem in (5.4).

3The objective functioon F (L) in (4.4) is standard; see (Soltani and Hegde, 2017a) for an in-depth discussion.
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We assume that the design matrices Ai’s are constructed as follows. Consider a partial Fourier

or partial Hadamard matrix X ′ ∈ Rn×p2 which is multiplied from the right by a diagonal matrix,

D, whose diagonal entries are uniformly distributed over {−1,+1}p2 . Call the resulting matrix

X = X ′D where each row is denoted by XT
i ∈ Rp2 . If we reshape each of these rows as a matrix,

we obtain “measurement” (or “design”) matrices Ai ∈ Rp×p for i = 1, . . . ,m. This particular

choice of design matrices Ai’s is because they support fast matrix-vector multiplication which takes

O(p2 log(p)).

The following theorem gives the upper bound on the term, ‖PJt∇F (L∗)‖F , that appears in

Theorem 4.5. This can be viewed as a “statistical error” term, and is zero in the absence of noise.

Theorem 4.6. Consider the observation model y = g(AL∗) + e described above. Let the number of

samples scale as n = O(pr polylog (p)), then with high probability, for any given subspace J ⊂ Rp×p:

we have for t = 1, . . . , T :

‖PJ∇F (L∗)‖F ≤
1 + δ2r+r∗√

n
‖e‖2, (4.5)

where 0 < δ2r+r∗ < 1 denotes RIP constant of A.

Corollary 4.7. Consider all the assumptions and definitions stated in Theorem 4.5. If we initialize

MAPLE with L0 = 0, then after Titer = O
(

log
(
‖L∗‖F
ϑ

))
iterations, we obtain:

‖LT+1 − L∗‖F ≤ ϑ+
1√
n

νη(1 + δ2r+r∗)

1− ρ
‖e‖2, (4.6)

for some ϑ > 0.

We now provide conditions under which the assumption of RSC/RSS in Theorem 4.5 are sat-

isfied.

Theorem 4.8 (RSC/RSS conditions for MAPLE). Let the number of samples scaled as n =

O(pr polylog (p)). Also, assume that
µ42(1+ω)4

µ41(1−ω)4
≤ C2(1− ε) rr∗ for some C2, ω > 0 and ε > 0 denotes

the approximation ratio in algorithm 4.1. Then with high probability, the loss function F (L) in (4.4)

satisfies RSC/RSS conditions with constants m2r+r∗ ≥ µ1(1− ω) and M2r+r∗ ≤ µ2(1 + ω) in each

iteration.
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Sample complexity. By Corollary 4.7 and Theorem 4.8, the sample complexity of MAPLE

algorithm is given by n = O(pr polylog (p)) in order to achieve a specified estimation error. This

sample complexity is nearly as good as the optimal rate, O(pr). We note that the leading constant

in the Oh- notation depends on ρ, η, RIP constant of the linear operator A, and the magnitude of

the additive noise. (Since we assume that this noise term is subgaussian, it is easy to show that

‖e‖2 scales as O(
√
n) in expectation and with high probability).

Time complexity. Each iteration of MAPLE needs to compute the gradient, plus an approx-

imate tail projection to produce a rank-r matrix. Computing the gradient involves one application

of the linear operator A for calculating A(L), and one application of the adjoint operator, i.e.,

A∗(y−g(A(L)). Let Tmult and T ′mult denote the required time for these operations, respectively. On

the other hand, approximate tail projection takes O
(
p2r log p√

ε

)
operations for achieving the approx-

imate ratio ε According to (Musco and Musco, 2015). Thanks to the linear convergence of MAPLE,

the total number of iterations for achieving ϑ accuracy is given by Titer = O
(

log
(
‖L∗‖F
ϑ

))
. Let

π = M
m ; thus, the overal running time scales as T = O

((
Tmult + T ′mult + p2r∗π4 log p√

ε

)(
log ‖L

∗‖F
ϑ

))
by the choice of r according to Theorem 4.5. If we assume that the design matrices Ai’s are imple-

mented via a Fast Fourier Transform, computing Tmult = T ′mult takes O(p2 log p) operations. As a

result, T = O
((
p2 log p+ p2r∗π4 log p√

ε

)(
log ‖L

∗‖F
ϑ

))
.

In Table 4.1, for g(x) = x and the linear operator A defined above, we summarize the sample

complexity as well as (asymptotic) running time of several algorithms. In this table, we assume

constant RSC/RSS ratio for all the algorithms. We find that all previous methods, while pro-

viding excellent sample complexity benefits, suffer from either cubic dependence on p, or inverse

dependence on the estimation error ϑ, or quadratic dependence on the condition number κ of the

optimum. In contrast, MAPLE enjoys (unconditional) Õ(p2r∗) dependence, which is (nearly) linear

in the size of the matrix for small enough r∗.
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4.3.3 Logistic PCA

Principle component analysis (PCA) is a widely used statistical tool in various applications such

as dimensionality reduction, denoting, and visualization, to name a few. While the regular PCA

sometimes called linear PCA can be applied for any data type, its usage for binary or categorical

observed data is not satisfactory, due to the fact that it tries to minimize a least square objective

function. In other words, PCA is useful where the likelihood of underlying data is distributed as

Gaussian. As a result, applying it to the binary case makes the result less interpretable (Jolliffe,

2002).

To alleviate this issue, one can assume that each row of the observed binary matrix (a sam-

ple data) follows the multivariate Bernoulli distribution such that its maximum variations can be

captured by a low-dimensional manifold, and then use the logistic loss to find this low-dimensional

representation of the observed data. This problem has been also studied in the context of collabo-

rative filtering on binary data (Johnson, 2014), one-bit matrix completion (Davenport et al., 2014),

and network sign prediction (Chiang et al., 2014).

Mathematically, consider an observed binary matrix Y ∈ Rp×p with entries belong to set {0, 1}

such that the mean of each Yij is given by pij = P (Yij = 1|Lij) = σ(L∗ij) where σ(z) = 1
1+exp(−z) .

The goal is to estimate an underlying low-rank matrix L∗ such that L∗ij = log(
pij

1−pij ) = logit(pij)

by minimizing the following regularized logistic loss:

min
L

F (L) = −
∑
i,j

(
Yij log σ(Lij) + (1− Yij) log(1− σ(Lij))

)
+ λ‖L‖2F

s.t. rank(L) ≤ r∗,

(4.7)

where λ > 0 is a tuning parameter. We note that the objective function in (4.7) without the

regularizer term is only strongly smooth. By adding the Frobenius norm of the optimization

variable, we make sure that it is also globally strongly convex (Hence, RSC/RSC conditions are

automatically satisfied.). Here, we focus on finding the solution of (4.7), L∗. Hence, we do not

have explicitly the notion of ground truth as previous application. For solving the optimization

problem (4.7), different algorithms have been proposed in recent years which are either slow such as
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convex nuclear norm minimization, or they do not have theoretical guarantees. (Chiang et al., 2014;

Johnson, 2014; Davenport et al., 2014). Very recently, a non-convex factorized algorithm which

is supported by rigorous convergence analysis, and is comparable to our algorithm (MAPLE),

proposed by (Park et al., 2016a). We will compare the performance of this algorithm with the

proposed one in the experimental section. We also note that in this application, there is no notion

of sample complexity as we observe all the entries of Y . In addition , running time of MAPLE for

solving the above problem is given by Õ(p2r) as the dominating term is related to the projection

step and gradient calculation takes O(p2) time.

4.3.4 Precision Matrix Estimation (PME)

Gaussian graphical models are a popular tool for modeling the interaction of a collection of

Gaussian random variables. In Gaussian graphical models, nodes represent random variables and

edges model conditional (in)dependence among the variables (Wainwright and Jordan, 2008).

Over the last decade, significant efforts have been directed towards algorithms for learning sparse

graphical models.

Mathematically, let Σ∗ denote the positive definite covariance matrix of p Gaussian random

variables, and let Θ∗ = (Σ∗)−1 be the corresponding precision matrix. Then, Θ∗ij = 0 implies that

the ith and jth variables are conditionally independent given all other variables and the edge (i, j)

does not exist in the underlying graph. The basic modeling assumption is that Θ∗ is sparse, i.e.,

such graphs possess only a few edges. Such models have been fruitfully used in several applications

including astrophysics (Padmanabhan et al., 2016), scene recognition (Souly and Shah, 2016), and

genomic analysis (Yin and Li, 2013). Numerous algorithms for sparse graphical model learning –

both statistically as well as computationally efficient – have been proposed in the machine learning

literature (Friedman et al., 2008; Mazumder and Hastie, 2012; Banerjee et al., 2008; Hsieh et al.,

2011). Unfortunately, sparsity is a simplistic first-order model and is not amenable to modeling

more complex interactions. For instance, in certain scenarios, only some of the random variables
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are directly observed, and there could be relevant latent interactions to which we do not directly

have access.

The existence of latent variables poses a significant challenge in graphical model learning since

they can confound an otherwise sparse graphical model with a dense one. This scenario is illustrated

in Figure 4.1. Here, nodes with solid circles denote the observed variables, and solid black edges

are the “true” edges in the graphical model. One can see that the “true” graph is rather sparse.

However, if there is even a single unobserved (hidden) variable denoted by the node with the

broken red circle, then it will induce dense, apparent interactions between nodes that are otherwise

disconnected; these are denoted by the dotted black lines. A flexible and elegant method to learn

latent variables in graphical models was proposed by (Chandrasekaran et al., 2012). At its core, the

method imposes a superposition structure in the observed precision matrix as the sum of sparse

and low-rank matrices, i.e., Θ∗ = S∗ + L∗. Here, Θ∗, S∗, L∗ are p × p matrices where p is the

number of variables. The matrix S∗ specifies the conditional observed precision matrix given the

latent variables, while L∗ encodes the effect of marginalization over the latent variables. The rank

of L∗, r∗, is equal to the number of latent variables and we assume that r is much smaller than p.

The goal is to estimate precision matrix Θ∗. Here, we merely focus on the learning the low-rank

part, and assume that the sparse part is a known prior4.

To put formally the estimation of matrix Θ∗ in our framework, suppose that we observe samples

x1, x2, . . . , xn
i.i.d∼ N (0,Σ) where each xi ∈ Rp. Let C = 1

n

∑n
i=1 xix

T
i denote the sample covariance

matrix, and Θ∗ = (Σ∗)−1 denote the true precision matrix. Following the formulation of (Han

et al., 2016), we want to solve the following minimization of NLL problem:

min
L

F (L) = − log det(S̄ + L) + 〈S̄ + L,C〉

s.t. rank(L) ≤ r∗, L � 0.

(4.8)

where Θ∗ = S̄ +L∗ such that S̄ is a known positive diagonal matrix (in general, a positive definite

matrix) imposed in the structure of precision matrix to make the above optimization problem

4For, instance, if the data obeys the spiked covariance model (Johnstone, 2001), the covariance matrix is expressed
as the sum of a low-rank matrix and a diagonal matrix. Consequently, by the Woodbury matrix identity, the precision
matrix is the sum of a diagonal matrix and a low-rank matrix; Θ∗ = S̄ + L∗. In addition, problem in (4.8) is similar
to the latent variable in Gaussian graphical model proposed by (Chandrasekaran et al., 2010).
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Table 4.2: Summary of our contributions, and comparison with existing methods. Here, γ =√
σr
σr+1

− 1 represents the spectral gap parameter in intermediate iterations. The overall running

time of the ADMM approach is marked as poly(p) since the precise rate of convergence is unknown.

Algorithm Running Time Spectral dependency

SDP (Chandrasekaran et al., 2012) poly(p) Yes

ADMM(Ma et al., 2013) poly(p) Yes

QUICDIRTY(Yang and Ravikumar, 2013) Õ(p3) Yes

SVP(Jain et al., 2014) Õ(p3) No

Factorized(Bhojanapalli et al., 2016a) Õ(p2r/γ) Yes

MAPLE Õ(p2r) No

well-defined. We will exclusively function in the high-dimensional regime where n � p2. As an

instantiation of the general problem (5.4), our goal is to learn the low-rank matrix L∗ with rank

r∗ � p, from samples xi’s. We provide a summary of the theoretical properties of our methods,

and contrasts them with other existing methods for PME existing methods. Table 4.2 shows this

comparison for PME methods.

While problem (4.8) has extra PSD cone constraint compared to the general problem (5.4), we

can still use MAPLE. Please see Theorem 4.13.

To make a theoretical comparison with our proposed algorithm, we first consider the similar

exact projection approach of (Li et al., 2016) (the approach of (Li et al., 2016) does not

consider the PSD projection) as its analysis for establishing RSC/RSS is different from NLARM.

In this setup, the algorithm starts with zero initialization and proceeds in each iteration as Lt+1 =

P+
r

(
Lt − η′∇F (Lt)

)
where P+

r (·) for some r > r∗ denotes projection onto the space of rank-

r matrices which is implemented through performing an exact eigenvalue decomposition (EVD)

of the input and selecting the nonnegative eigenvalues and corresponding eigenvectors (Henrion

and Malick, 2012). Please note that we may not impose a psd projection within every iteration.

If an application requires a psd matrix as the output (i.e., if proper learning is desired), then

we can simply post-process the final estimate L̂ by retaining the nonnegative eigenvalues (and
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Figure 4.1: Illustration of effects of latent variable in graphical model learning. Solid edges repre-

sent “true” conditional dependence, while dotted edges represent apparent dependence due to the

presence of the latent variable h.

corresponding eigenvectors) through an exact EVD. The following theorem shows an upper bound

on the estimation error of the low-rank matrix at each iteration through exact projection.

Theorem 4.9 (Linear convergence with exact projection approach). Assume that the objective

function F (L) satisfies the RSC/RSS conditions with corresponding constants as M2r+r∗ and m2r+r∗.

Define ν ′ =
√

1 + 2
√
r∗√

r−r∗ . Let Jt denotes the subspace formed by the span of the column spaces of

the matrices Lt, Lt+1, and L∗. In addition, assume that r > C ′1

(
M3r
m3r

)4
r∗ for some C ′1 > 0. Choose

step size η′ as 1−
√
β′

M2r+r∗
≤ η′ ≤ 1+

√
β′

m2r+r∗
where β′ =

√
β−1√
β−1+2

for some β > 1. Then, ESVP outputs a

sequence of estimates Lt such that:

‖Lt+1 − L∗‖F ≤ ρ′‖Lt − L∗‖F + ν ′η′‖PJt∇F (L∗)‖F , (4.9)

where ρ′ = ν ′
√

1 +M2
3rη
′2 − 2m3rη′.

The quality of the estimates in Theorems 4.9 is upper-bounded by the gradient terms ‖PJt∇F (L∗)‖F

in (4.9) within each iteration. The following theorem establishes these bounds:

Theorem 4.10. Under the assumptions of Theorem 4.9, for any fixed t we have:

‖PJt∇F (L∗)‖F ≤ c2

√
rp

n
, (4.10)
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with probability at least 1− 2 exp(−p) where c2 > 0 are absolute constant.

Next, we verify the RSS/RSC conditions of the objective function defined in (4.8), justifying

the assumptions made in Theorem 4.9.

Theorem 4.11 (RSC/RSS conditions for exact projection approach). Let the number of samples

scaled as n = O
(

1
δ2

(
η′

1−ρ′
)2
rp

)
for some small constant δ > 0 and ρ′ defined as Theorem 4.9.

Also, assume that

Sp ≤ S1 ≤ C ′′2 (
r

r∗
)
1
8Sp −

(
1 +
√
r∗
)
‖L∗‖2 − δ.

Then, the loss function F (L) in (4.8) satisfies RSC/RSS conditions with constants m2r+r∗ ≥
1

(S1+(1+
√
r)‖L∗‖2+δ)2

and M2r+r∗ ≤ 1
S2
p

that satisfy the assumptions of Theorem 4.9 in each iter-

ation.

The above theorem states that convergence of our method is guaranteed when the eigenvalues

of S̄ are roughly of the same magnitude, and large when compared to the spectral norm of L∗. We

believe that this is merely a sufficient condition arising from our proof technique, and our numerical

evidence shows that the algorithm succeeds for more general S̄ and L∗.

Time complexity. Each iteration of exact projection appraoch needs a full EVD, which

requires cubic running time (computing gradient needs only needs O(pr + r3)). Since the total

number of iterations is logarithmic, the overall running time scales as Õ(p3).

Hence, we can use MAPLE (without posing psd constraint) to reduce the cubic time complex-

ity of exact projection. Now we provide conditions under which the assumption of RSC/RSS in

Theorem 4.5 are satisfied.

Theorem 4.12 (RSC/RSS conditions for MAPLE). Let n = O
(

1
δ′2

(
νη

1−ρ

)2
rp

)
for some small

constant δ′ > 0, with ρ as defined in theorem 4.5. Also, assume the followings for some C4, C
′′
3 > 0:

‖L∗‖2 ≤
1

1 +
√
r∗

 Sp

1 + C4

(
(1− ε)( r∗r )

) 1
8

−
S1(C4((1− ε)( r∗r ))

1
8 )

1 + C4

(
(1− ε)( r∗r )

) 1
8

− c2νη

1− ρ

√
rp

n

 (4.11)

Sp ≤ S1 ≤
C ′′3

(1− ε)
1
8

(
r

r∗
)
1
8 (Sp − a′)−

(
1 +
√
r∗
)
‖L∗‖2 − δ′, (4.12)
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where 0 < a′ ≤
(
1 +
√
r∗
)
‖L∗‖2 + δ′ for some δ′ > 0. Then, the loss function F (L) in (4.8)

satisfies RSC/RSS conditions with constants m2r+r∗ ≥ 1
(S1+(1+

√
r)‖L∗‖2+δ′)2

and M2r+r∗ ≤ 1
(Sp−a′)2

that satisfy the assumptions of Theorem 4.5 in each iteration.

Theorem 4.12 specifies a family of true precision matrices Θ∗ = S̄ + L∗ that can be provably

estimated using our approach with an optimal number of samples. Note that since we do not

perform psd projection within MAPLE, it is possible that some of the eigenvalues of Lt are negative.

Next, we show that with high probability, the absolute value of the minimum eigenvalue of Lt is

small.

Theorem 4.13. Under the assumptions in Theorem 4.12 on L∗, using MAPLE to generate a rank

r matrix Lt for all t = 1, . . . , T guarentees with high probability the minimum eigenvalue of Lt

satisfies: λp(L
t) ≥ −a′ where 0 < a′ ≤

(
1 +
√
r∗
)
‖L∗‖2 + c2νη

1−ρ

√
rp
n .

Time complexity. Each iteration of MAPLE needs a tail approximate projection on the set of

rank r matrices. According to (Musco and Musco, 2015), these operations takes k′ = O
(
p2r log p√

ε

)
for error ε (computing gradient needs only needs O(pr+ r3)). Since the total number of iterations

is once again logarithmic, the overall running time scales as Õ(p2r).

Sample complexity. Using the upper bounds in (4.10) and Theorems 4.11 and 4.12, the

sample complexity of MAPLE, and also exact projection approach scales as n = O(pr) to achieve

constant estimation error. This matches the number of degrees of freedom of a p× p matrix with

rank r.

4.4 Experimental Results

We provide a range of numerical experiments supporting our proposed algorithm and comparing

with existing approaches. For NLARM and logistic PCA frameworks, we compare our algorithms

with factorized gradient descent (Bhojanapalli et al., 2016a) as well as projected gradient descent

(i.e., the SVP algorithm of (Jain et al., 2014)). In our results below, FGD denotes factorized

gradient descent algorithm, and SVD refers to SVP type algorithm where exact SVD has been used
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Figure 4.2: Comparisons of algorithms with g(x) = 2x + sin(x). (a) Average of the relative error

in estimating L∗. Parameters: p = 1000, r∗ = r = 50, and n = 4pr. Top: κ(L∗) = 1.1. Bottom:

κ(L∗) = 20. (b) Parameters: p = 300, κ(L∗) = 1.1, r∗ = 10, and n = 4pr. Top: Average of

the relative error. Bottom: Average running time. (c) Top: Probability of success. Parameters:

p = 300, r∗ = r = 10. (c) Bottom: Average of the relative error with different noise level.

Parameters: p = 300, κ = 2, and n = 7pr.

for the projection step.5 For PME application, our comparisons is with the regularized maximum

likelihood approach of (Chandrasekaran et al., 2012), which we use CVX (G. and B., 2014), and

with a modification of the ADMM-type method proposed by (Ma et al., 2013). We manually tuned

step-sizes and regularization parameters in the different algorithms to achieve the best possible

performance. First we provide the experiments for our fist instantiation, NLARM.

4.4.1 Nonlinear Affine Rank Minimization (NLARM)

Synthetic data. We report results for all algorithms in Figure 4.2. The link function is set to

g(x) = 2x+ sin(x); this function satisfies the derivative conditions discussed above. We construct

5we have to mention that we have also used more well-known (but spectrum-dependent) Lanczos method for the
projection step, and have obtained the same performance as SVD. Hence, we remove it from all the plots.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: Comparison of algorithms for real 2D image with g(x) = 1−e−x
1+e−x . (a) True 512 × 512

image. (b) Truncated true image with 30 top singular values. Reconstructed image using (c) FGD,

(d) FGD with longer time, (e) SVD, (f) MAPLE (r = 30), (g) MAPLE (r = 40), (h) MAPLE

(r = 50).

the ground truth low-rank matrix L∗ with rank r∗ by generating a random matrix U ∈ Rp×r∗ with

entries drawn from the standard normal distribution. We ortho-normalize the columns of U , and

set L∗ = UDUT where D ∈ Rr∗×r∗ is a diagonal matrix with D11 = κ(L∗), and Djj = 1 for j 6= 1.

After this, we apply a linear operator A on L∗, i.e., A(L∗)i = 〈Ai, L∗〉 where the choice of Ai has

been discussed above. Finally, we obtain the measurements y = g(A(L∗)). When reporting noise

robustness, we add a Gaussian noise vector e ∈ Rm to g(A(L∗)).

In Panel (a), the running time of the four algorithms are compared. For this experiment, we

have chosen p = 1000, and the rank of the underlying matrix L∗ to be 50. We also set the projected

rank as r = 50. The number of measurements is set to n = 4pr. We consider a well-conditioned

matrix L∗ with κ(L∗) = 1.1 for top plot and κ = 20 for the bottom one. Then we measure the

relative error in estimating of L∗ in Frobenius norm in log scale versus the CPU time takes for 200

iterations for all of the algorithms. We run the algorithms for 15 Monte Carlo trials. As we can see,
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Table 4.3: Numerical results for the real data experiment illustrating in Figure 4.3. T denotes the

number of iterations.

Algorithm Relative Error Running Time Projected Rank

FGD (T = 300) 0.0879 4.9816 30

FGD (T = 1000) 0.0602 15.9472 30

SVD (T = 300) 4.4682e− 04 19.4700 30

MAPLE (T = 300) 9.7925e− 05 4.2375 30

MAPLE (T = 300) 9.9541e− 05 5.5571 40

MAPLE (T = 300) 1.3286e− 04 7.1306 50

when κ is small, FGD has comparable running time with MAPLE (top plot); on the other hand,

when we have ill-posed L∗, FGD takes much longer to achieve the same relative error.

Next, we show the performance of the algorithms when the projected rank is changed. The

parameters are as p = 300, κ(L∗) = 1.1, r∗ = 10, and n = 4pr. We set the number of Monte Carlo

trials to 50. In the top plot in Panel (b), we have plotted the relative error as before versus the

various r values by averaging over the trials. As we can see, projecting onto the larger space is an

effective and practical strategy to achieve small relative error when we do not know the true rank.

Furthermore, the bottom plot of Panel (b) shows the the average running time for either achieving

relative error less than 10−4, or 100 iterations versus the projected rank. These results suggest that

both FGD and MAPLE have the comparable running when we increase the projected rank, while

the other SVP algorithms have much longer running time.

Next, we consider the effect of increasing condition number of the underlying low-rank matrix

L∗ on the performance of the different algorithms. To do this, we set p = 300, and r∗ = r = 10.

The number of measurements is set to cpr where c = 5, 8, 11 for FGD and 5 for others. Then we

run all the algorithms 50 times with different condition numbers ranging from κ = 1 (well-posed)

to i.e., κ = 1024 (highly ill-posed). We define the probability of success as the number of times

that the relative error is less than 0.001. As illustrated in the top plot of panel (c), all SVP-type

algorithms are always able to estimate L∗ even for large condition number, i.e., κ = 1024, whereas
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FGD fails. In our opinion, this feature is a key benefit of MAPLE over the current fastest existing

methods for low-rank estimation (based on factorization approaches).

Finally, we consider the noisy scenario in which the observation y is corrupted by different

Gaussian noise level. The parameters are set as p = 300, r = 10, 25, 40 for MAPLE and 10 for

the others, r∗ = 10, n = 7pr, and κ = 2. The bottom plot in Panel (c) shows the averaged over

50 trials of the relative error in L∗ versus the various standard deviations. From this plot, we see

that MAPLE with r = 40 is most robust, indicating that projection onto the larger subspace is

beneficial when noise is present.

Real data. We also run MAPLE on a real 2D 512×512 image, assumed to be an approximately

low-rank matrix. The choice of A is as before, but for the link function, we choose the sigmoid

g(x) = 1−e−x
1+e−x . Figure 4.3 visualizes the reconstructed image by different algorithms. In Figure 4.3,

(a) is the true image and (b) is the same image truncated to its r∗ = 30 largest singular values. The

result of FGD is shown in (c) and (d) where for (d) we let algorithm run for many more iterations.

Reconstruction by SVD is shown in (e). Finally, (f), (g), and (h) illustrate the reconstructed

image by using MAPLE with various rank parameters. The numerical reconstruction error is given

in Table 4.3. MAPLE is the fastest method among all methods, even when performing rank-r

projection with r larger than r∗.

4.4.2 Logistic PCA

In this section, we provide some representative experimental results for our second application,

logistic PCA. We report results for all algorithms in Figure 4.4. We construct the ground truth

low-rank matrix L∗ with rank r∗ similar to NLARM case.

In panel (a), the running time of all algorithms are compared. For this experiment, we have

chosen p = 1000, and the rank of the underlying matrix L∗ to be 5. We also set the projected

rank as r = 5. We consider a well-conditioned matrix L∗ with κ(L∗) = 1.1531 for top plot and

κ = 21.4180 for the bottom one. Then we measure the evolution of the logistic loss defined in (4.7)

without any regularizer versus the CPU time takes for 50 iterations for all of the algorithms. We
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Figure 4.4: Comparisons of the algorithms for the average of the logarithm of the logistic loss.

(a) Parameters: p = 1000, r∗ = r = 5. Top: κ(L∗) = 1.1699. Bottom: κ(L∗) = 21.4712. (b)

Parameter: p = 200. Top: Effect of extending the projected space. Bottom: Effect of increasing

the condition number for r∗ = r = 5. T denotes the number of iterations.

run the algorithms for 20 Monte Carlo trials, and illustrate the average result. As we can see, when

κ is small, FGD has comparable running time with MAPLE (top plot); on the other hand, when

we have ill-posed L∗, FGD takes longer to achieve the same performance.

In panel (b), top plot, we consider the effect of increasing the dimension of the projected space.

In this experiment, we set p = 200, consider the well-posed case where κ(L∗) = 1.4064, and use

20 Monte Carlo trials. As we can see all the algorithm show the same trend which verifies that

projecting onto the larger space is an effective and practical strategy to achieve small relative error

when we do not know the true rank (This is expected according to the theory of MAPLE, while it

is not theoretically justified by factorized method).
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Finally, bottom plot in panel (b) shows the effect of increasing condition number of L∗. In this

experiment, p = 200, r∗ = r = 5, and the number of trials equals to 20. We first let all algorithms

run for 50 iterations, and also consider FGD for more number of iterations, T = 200 and T = 400.

As it is illustrated, both MAPLE and SVD algorithms are more robust to the large condition

number than FGD with 50 number of iterations. But if we let FGD run longer, it shows the same

performance as SVPs which again verifies the dependency of the running time of factorized method

to the condition number.

4.4.3 Precision Matrix Estimation (PME)

We now represents some simulation results for our last application. First we start with synthetic

data. Synthetic data. We use a diagonal matrix with positive values for the (known) sparse part,

S̄. For a given number of observed variables p, we set r = 5% as the number of latent variables.

We then follow the method proposed in (Ma et al., 2013) for generating the sparse and low-rank

components S̄ and L∗. For simplicity, we impose the sparse component to be psd by forcing it to be

positive diagonal matrix. All reported results on synthetic data are the average of 5 independent

Monte-Carlo trials. Our observations comprise n samples, x1, x2, . . . , xn
i.i.d∼ N (0, (S̄ + L∗)−1). In

our experiments, we used a full SVD as projection step for exact projection procedure (Due to

numerical stability, we use SVD rather than EVD), FGD, ADMM method and convex approach

based on nuclear norm minimization. We used CVX to run convex approach (it uses SDP method

to solve nuclear norm minimization); alternatively, one can use other convex approaches which

might be faster than convex.

Panel (a) and (b) in Figure 4.5 illustrate the comparison of algorithms for PME in terms of the

relative error of the estimated L in Frobenius norm versus the “oversampling” ratio n/p. In this

experiment, we fixed p = 100 in (a) and p = 1000 in (b) and vary n. In addition, for both of these

results, condition number is given by κ(L∗) = 2.4349 and κ(L∗) = 2.9666, respectively. We observe

that MAPLE, FGD, and exact procedure estimate the low-rank matrix even for the regime where

n is very small, whereas both ADMM and CVX does not produce very meaningful results.
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Figure 4.5: Comparison of algorithms both in synthetic and real data. (a) relative error of L in

Frobenius norm with p = 100, and r = r∗ = 5. (b) relative error of L in Frobenius norm with

p = 1000, and r = r∗ = 50. (c) NLL versus time in Rosetta data set with p = 1000.

We also report the results of several more experiments on synthetic data. In the first experiment,

we set p = 100, n = 400p, and r = r∗ = 5. Table 4.4 lists several metrics that we use for algorithm

comparison. From Table 4.4, we see that MAPLE, FGD, and exact procedure produce better

estimates of L compared to ADMM and convex method. As anticipated, the total running time of

convex approach is much larger than other algorithms. Finally, the estimated objective function

for first three algorithms is very close to the optimal (true) objective function compared to ADMM

and CVX.

We increase the dimension to p = 1000 and reported the same metrics in Table 4.5 similar to

Table 4.4. We did not report convex results as it takes long time to be completed. Again, we get

the same conclusions as Table 4.4. Important point here is that in this specific application, FGD

has better running time compared to MAPLE for both well-condition and ill-condition problem.

Here, we did not report the running time for the ill-posed case; however, we observed that FGD

is not affected by condition number of ground-truth. We conjecture that FGD delivers a solution

for problem (4.8) such that its convergence is independent of the condition number of ground-

truth similar to (Bhojanapalli et al., 2016b) where authors showed that for linear matrix sensing

problem, there is no dependency on the condition number if they use FGD method. Proving of this
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Table 4.4: Comparison of different algorithms for p = 100 and n = 400p. NLL stands for negative

log-likelihood.

Alg Estimated NLL True NLL Relative error Total time

FGD −9.486278e+ 01 −9.485018e+ 01 2.914218e− 01 2.150596e− 02

SVD 9.485558e+ 01 −9.485018e+ 01 3.371867e− 01 6.552529e− 01

MAPLE −9.485558e+ 01 −9.485018e+ 01 3.371742e− 01 3.092728e− 01

ADMM −9.708976e+ 01 −9.485018e+ 01 5.192783e− 01 1.475124e+ 00

Convex −9.491779e+ 01 −9.485018e+ 01 5.192783e− 01 7.482316e+ 02

conjecture can be interesting future direction. Also, Tables 4.6 and 4.7 show the same experiment

discussed in Tables 4.4 and 4.5, but for small number of samples, n = 50p.

Real data Here, we just evaluate our methods through the Rosetta gene expression data

set (Hughes et al., 2000). This data set includes 301 samples with 6316 variables. We run the

ADMM algorithm by (Ma et al., 2013) with p = 1000 variables which have highest variances, and

obtained an estimate of the positive definite component S̄. Then we used S̄ as the input for MAPLE

and exact projection procedure. The target rank for all three algorithms is set to be the same as

that returned by ADMM. In Figure 4.5 plot (c), we illustrate the NLL for these algorithms versus

wall-clock time (in seconds) over 50 iterations. We observe that all the algorithms demonstrate

linear convergence, as predicted in the theory. Among the these algorithms, MAPLE obtains the

quickest rate of decrease of the objective function.

Table 4.5: Comparison of different algorithms for p = 1000 and n = 400p.

Alg Estimated NLL True NLL Relative error Total time

FGD −2.638684e+ 03 −2.638559e+ 03 3.144617e− 01 1.301985e+ 01

SVD −2.638674e+ 03 −2.638559e+ 03 3.019913e− 01 1.584453e+ 02

MAPLE −2.638675e+ 03 −2.638559e+ 03 3.020130e− 01 2.565310e+ 01

ADMM −2.638920e+ 03 −2.638559e+ 03 3.921407e− 01 3.375073e+ 02
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Table 4.6: Comparison of different algorithms for p = 100 and n = 50p. NLL stands for negative

log-likelihood.

Alg Estimated NLL True NLL Relative error Total time

FGD −9.483037e+ 01 −9.470944e+ 01 1.034812e+ 00 2.294928e− 02

SVD −9.477855e+ 01 −9.470944e+ 01 8.586494e− 01 1.026811e+ 00

MAPLE −9.478611e+ 01 −9.470944e+ 01 8.606593e− 01 4.854349e− 01

ADMM −9.356307e+ 01 −9.470944e+ 01 1.823421e+ 00 3.001534e+ 00

Convex −9.528296e+ 01 −9.470944e+ 01 1.864212e+ 00 7.046295e+ 02

Table 4.7: Comparison of different algorithms for p = 1000 and n = 50p.

Alg Estimated NLL True NLL Relative error Total time

FGD −2.639646e+ 03 −2.638491e+ 03 1.155856e+ 00 1.335701e+ 01

SVD −2.638804e+ 03 −2.638491e+ 03 8.610451e− 01 1.567543e+ 02

MAPLE −2.638878e+ 03 −2.638491e+ 03 8.722342e− 01 2.606750e+ 01

ADMM −2.643757e+ 03 −2.638491e+ 03 1.517834e+ 00 4.019458e+ 02

4.5 Conclusion

In this chapter, we focused on the low-rank matrix structure for our underlying signal. In par-

ticular, we formulated a general convex optimization problem subject to the rank-constraint. Then,

we proposed an efficient algorithm which is as fas as the factorized based method and unconditional

as the projection gradient algorithms. We evaluated the general framework for different problems,

including Nonlinear Affine Rank Minimization, Logistic PCA, and Precision Matrix Estimation in

probabilistic graphical models. We also provide statistical and computational analysis for these

problems.

4.6 Appendix. Overview

We provide full proofs of all theorems discussed in this chapter.
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M(Ur) denotes the set of vectors associated with Ur, the set of all rank-r matrix subspaces.

We show the maximum and minimum eigenvalues of a matrix A ∈ Rp×p as λmin(A), λmax(A),

respectively. Furthermore σi(A) denotes the ith largest singular value of matrix A. We need

the following equivalent definitions of restricted strongly convex and restricted strong smoothness

conditions.

Definition 4.14. A function f satisfies the Restricted Strong Convexity (RSC) and Restricted

Strong Smoothness (RSS) conditions if one of the following equivalent definitions is satisfied for all

L1, L2, L ∈ Rp×p such that rank(L1) ≤ r, rank(L2) ≤ r, rank(L) ≤ r:

mr

2
‖L2 − L1‖2F ≤ f(L2)− f(L1)− 〈∇f(L1), L2 − L1〉 ≤

Mr

2
‖L2 − L1‖2F , (4.13)

mr‖L2 − L1‖2F ≤ 〈PU (∇f(L2)−∇f(L1)) , L2 − L1〉 ≤Mr‖L2 − L1‖2F , (4.14)

mr ≤ ‖PU∇2f(L)‖2 ≤Mr, (4.15)

mr‖L2 − L1‖F ≤ ‖PU (∇f(L2)−∇f(L1)) ‖F ≤Mr‖L2 − L1‖F , (4.16)

where U is the span of the union of column spaces of the matrices L1 and L2. Here, mr and Mr

are the RSC and RSS constants, respectively.

4.6.1 Appendix A. Proof of Theorems in Section 4.3.1

Before proving the main theorems, we restate the following hard-thresholding result from lemma

3.18 in (Li et al., 2016):

Lemma 4.15. For r > r∗ and for any matrix L ∈ Rp×p, we have

‖Hr(L)− L∗‖2F ≤
(

1 +
2
√
r∗√

r − r∗

)
‖L− L∗‖2F , (4.17)

where rank(L∗) = r∗, and Hr(.) : Rp×p → Ur denotes the singular value thresholding operator,

which keeps the largest r singular values and sets the others to zero.

For proving theorem 4.5, we cannot use directly lemma 4.15 since T operator returns an ap-

proximation of the top r singular vectors, and using exact projection in the proof of lemma 4.15 is
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necessary (Li et al., 2016). However, we can modify the proof of lemma 4.15 to make it applicable

through the approximate projection approach. Hence, we can prove Lemma 5.12:

Proof of Lemma (5.12). The proof is similar to the procedure described in (Li et al., 2016) with

some modification based on the per-vector guarantee property of approximate projection. In this

work, the proof in is given first for sparse hard thresholding, and then is generalized to the low-rank

case using Von Neumann’s trace inequality, i.e., for two matrices A,B ∈ Rp×p and corresponding

singular values σi(A) and σi(B), respectively, we have:

〈A,B〉 = Σ
min{rank(A),rank(B)}
k=1 σk(A)σk(B). (4.18)

First define θ = [σ2
1(L), σ2

2(L) . . . , σ2
r (L)]T . Let θ∗ = [σ2

1(L∗), σ2
2(L∗) . . . , σ2

r (L
∗)]T , and θ′ = T (θ).

Also, let supp(θ∗) = I∗, supp(θ) = I, supp(θ′) = I ′, and θ′′ = θ − θ′ with support I ′′. It follows

that

‖θ′ − θ∗‖22 − ‖θ − θ∗‖22 ≤ 2〈θ′′, θ∗〉 − ‖θ′′‖22.

Now define new sets I∗ ∩ I ′ = I∗1 and I∗ ∩ I ′′ = I∗2 with restricted vectors to these sets as

θI∗1 = θ∗1, θI∗2 = θ∗2, θ′I∗1 = θ1∗, and θ′′I∗2 = θ2∗ such that |I∗2| = r∗∗. Hence, ‖θ2∗‖2 = βθmax

where β ∈ [
√
r∗∗] and θmax = ‖θ2∗‖∞. By these definitions, we have:

‖θ′ − θ∗‖22 − ‖θ − θ∗‖22 ≤ 2‖θ2∗‖2‖θ∗2‖2 − ‖θ2∗‖22.

The proof continues to discuss in three cases as:

1. if ‖θ2∗‖2 ≤ θmax, then β = 1.

2. if θmax ≤ ‖θ2∗‖2 <
√
r∗∗θmax, then β = ‖θ2∗‖2

θmax
.

3. if ‖θ2∗‖2 ≥
√
r∗∗θmax, then β =

√
r∗∗.

In each case, the ratio of
‖θ′−θ∗‖22−‖θ−θ∗‖22

‖θ−θ∗‖22
is upper bounded in terms of r, r∗, r∗∗ and by using

the inequality |θmin| ≥ |θmax| where |θmin| is defined as the smallest entry of θ1∗. This inequality

holds due to the exact hard thresholding. However, it does not necessary hold when approximate

projection is used. To resolve this problem, we note that in our framework the approximate tail
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projection is implemented via any randomized SVD method which supports the so-called per-vector

guarantee. Recall from our discussion in section 4.3.1, the per vector guarantee condition means:

|uTi LLTui − ziLLT zi| ≤ εσ2
r+1 ≤ εσ2

i , i ∈ [r].

In our implementation, we use randomized block Krylov method (BK-SVD) which supports this

condition. In our notations, this condition implies, |θmin−θ̂min| ≤ εθmin where θ̂ = [σ̂2
1(L), σ̂2

2(L) . . . , σ̂2
r (L)]T .

By combing with |θmin| ≥ |θmax|, we thus have θ̂min ≥ (1 − ε)θmax. Now by this modification, we

can continue the proof with the procedure described in (Li et al., 2016). Let I :=
‖θ′−θ∗‖22−‖θ−θ∗‖22

‖θ−θ∗‖22
.

For each case, we have::

• case 1: I ≤ θ2max

(r−r∗+r∗∗)(1−ε)θ2min−θ2max
≤ 1

(r−r∗+r∗∗)(1−ε)−1 .

• case 2: I ≤ r∗∗θ2max

(r−r∗+r∗∗)(1−ε)θ2min
≤ r∗∗

(r−r∗+r∗∗)(1−ε) .

• case 3: I ≤ 2γ
√
r∗∗θ2max−r∗∗θ2max

(r−r∗+r∗∗)(1−ε)θ2min+r∗∗θ2max+γ2θ2max−2γ
√
r∗∗θ2max

e1
≤ 2

√
r∗∗

2
√

(r−r∗)(1−ε)+r∗∗( 5
4
−ε)−

√
r∗∗

, for some γ ≥
√
r∗∗.

In all the above cases, we have used the fact that θ̂min ≥ (1− ε)θmax. In addition, e1 in case 3 holds

due to maximizing the R.H.S. with respect to γ. After taking derivative w.r.t. γ, setting to zero,

and solving the resulted quadratic equation, we obtain that:

γ = max
{√

r∗∗,

√
r∗∗

2
+

√
(r − r∗)(1− ε) + r∗∗(

5

4
− ε)

}
Now if we plug in the value of γ in the R.H.S of case 3, we obtain the claimed bound. Putting the

three above bounds all together, we have:

‖θ′ − θ∗‖22 − ‖θ − θ∗‖22
‖θ − θ∗‖22

≤ max
{ 1

(r − r∗ + r∗∗)(1− ε)− 1
,

r∗∗

(r − r∗ + r∗∗)(1− ε)
,

2
√
r∗∗

2
√

(r − r∗)(1− ε) + r∗∗(5
4 − ε)−

√
r∗∗

}
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Hence,

‖θ′ − θ∗‖22 − ‖θ − θ∗‖22
‖θ − θ∗‖22

e1
≤ 2

√
r∗∗

2
√

(r − r∗)(1− ε) + r∗∗(5
4 − ε)−

√
r∗∗

e2
≤ 2

√
r∗

2
√

(r − r∗)(1− ε)−
√
r∗

e3
≤ 2√

1− ε

√
r∗√

r − r∗
,

where e1 follows by choosing r sufficiently large and the fact that ε can be chosen arbitrary small

(this inceases the running time of the approximate projection by log(1
ε ) factor), e2 holds due to

r∗∗ ≤ r∗, and finally e3 holds by the assumption on r in the lemma. This completes the proof.

Proof of Theorem 4.5. Let V t, V t+1, and V ∗ denote the bases for the column space of Lt, Lt+1, and

L∗, respectively. Assume ν =
√

1 + 2√
1−ε

√
r∗√
r−r∗ . Also, by the definition of the tail projection, we

have Lt ∈ M(Ur), and by definition of set J in the theorem, V t ∪ V t+1 ∪ V ∗ ⊆ Jt := J such that

rank(Jt) ≤ 2r + r∗ ≤ 3r. Define b = Lt − ηPJ∇F (Lt). We have:

‖Lt+1 − L∗‖F
e1
≤ ν‖b− L∗‖F

≤ ν‖Lt − L∗ − ηPJ∇F (Lt)‖F
e2
≤ ν‖Lt − L∗ − ηPJ

(
∇F (Lt)−∇F (L∗)

)
‖F + νη‖PJ∇F (L∗)‖F

e3
≤ ν

√
1 +M2

2r+r∗η
2 − 2m2r+r∗η‖Lt − L∗‖F + νη‖PJ∇F (L∗)‖F (4.19)

where e1 holds due to applying lemma 4.15. Moreover, e2 holds by applying triangle inequality and

e3 is obtained by combining the lower bound in (4.14) and upper bound in (4.16), i.e.,

‖Lt − L∗ − η′
(
∇JF (Lt)−∇JF (L∗)

)
‖22 ≤ (1 + η′

2
M2

2r+r∗ − 2η′m2r+r∗)‖Lt − L∗‖22.

In order that (4.19) implies convergence, we require that

ρ =

√1 +
2√

1− ε

√
r∗√

r − r∗

√1 +M2
2r+r∗η

2 − 2m2r+r∗η < 1

. By solving this quadratic inequality with respect to η, we obtain:(
M2r+r∗

m2r+r∗

)2

≤ 1 +

√
r − r∗

√
1− ε

2
√
r∗

,
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As a result, we obtain the the condition r ≥ C1
1−ε

(
M2r+r∗
m2r+r∗

)4
r∗ for some C1 > 0. Furthermore,

since r = αr∗ for some α > 1, we conclude the condition on step size η as 1−
√
α′

M2r+r∗
≤ η ≤ 1+

√
α′

m2r+r∗

where α′ =
√
α−1√

1−ε
√
α−1+2

. This completes the proof of Theorem 4.5.

4.6.2 Appendix B. Proof of Theorems in Section 4.3.2

We first prove the statistical error rate, staing in Theorem 4.6.

proof of Theorem 4.6. Let bi = vec(Ai) ∈ Rp2 denotes the ith row of matrix X ∈ Rm×p2 , defining in

the section 4.3.2 for i = 1, . . . , n. Since X is constructed by uniform randomly chosen m rows of a

p2×p2 DFT matrix multiplied by a diagonal matrix whose diagonal entries are uniformly distributed

over {−1,+1}P 2
, 1√

n
X satisfies the rank-r RIP condition with probability at least 1− exp(−cn$2)

(c > 0 is a constant) provided that m = O( 1
$2 prpolylog(p)) (Candes and Plan, 2011). On the

other hand, if a matrix B satisfies the rank-r RIP condition, then (Lee and Bresler, 2010)

∥∥∥PU 1√
n
B∗a

∥∥∥
2
≤ (1 + δr)‖a‖2, for all a ∈ Rn, (4.20)

where U denotes the set of rank-r matrices, and δr is the RIP constant. As a result, for all

t = 1, . . . , T we have:

∥∥∥ 1

n
PJt∇F (L∗)

∥∥∥
F

=
∥∥∥ 1

n
A∗e

∥∥∥
F

=
1√
n

∥∥∥PJt 1√
n
X∗e

∥∥∥
2
≤ 1 + δ2r+r∗√

n
‖e‖2,

where the last inequality holds due to (4.20) ( 1√
n
X has RIP constant δr, and from our definition,

rank(Jt) ≤ 2r + r∗), and the fact that e ∈ Rn.

proof of corollary 4.7. Consider upper bound in (4.19). By using induction, zero initialization, and

Theorem 4.6, we obtain ϑ accuracy after Titer = O
(

log
(
‖L∗‖F
ϑ

))
iterations. In other words, after

Titer iterations, we obtain:

‖LT+1 − L∗‖F ≤ ϑ+
1√
n

νη(1 + δ2r+r∗)

1− ρ
‖e‖2.
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The above results shows the linear convergence of APRM if there is no additive noise. We now

prove that the objective function defined in problem (4.4) satisfies the RSC/RSS conditions in each

iteration.

proof of Theorem 4.8. Let L = Lt for all t = 1, . . . , T . We follow the approach in (Soltani and

Hegde, 2017a). hence, we use the the Hessian based definition of RSC/RSC, stating in equa-

tion (4.15) in definition 4.14. We note that the Hessian of F (L) is given by:

∇2F (L) =
1

n

n∑
i=1

Aig
′(〈Ai, L〉)ATi ,

According to our assumption on the link function, we know 0 < µ1 ≤ g′(x) ≤ µ2 for all x ∈ D(g).

As a result λmin(∇2F (L)) ≥ 0 due to the positive semidefinite of AiA
T
i for all i = 1, . . . , n. Now

let Λmax = maxU λmax(PU∇2F (L)) and Λmin = minU λmin(PU∇2F (L)). Moreover, let W be any

set of rank-2r matrices such that U ⊆W . We have:

µ1 min
W

λmin

(
PW

(
1

n

n∑
i=1

AiA
T
i

))
≤ Λmin

≤ Λmax ≤ µ2 max
W

λmax

(
PW

(
1

n

n∑
i=1

AiA
T
i

))
, (4.21)

Now, we need to bound the upper bound and the lower bound in the above inequality. To do this,

we are using the assumption on the design matrices Ai’s, stating in the theorem. According to this,

we can write, PW
(

1
n

∑n
i=1AiA

T
i

)
= PW

(
1
nX

TX
)
. We follow the approach of (Hegde et al., 2016).

Now fix any set W as defined above. Recall that X = X ′D, where X ′ is a partial Fourier or partial

Hadamard matrix. Thus, by (Haviv and Regev, 2017), X ′ satisfies RIP condition with constant

4υ over the set of of s-sparse vectors with high probability when m = O
(

1
υ2
s log2( sυ ) log(p)

)
. Also

from (Krahmer and Ward, 2011), X is a (1± ξ)−Johnson-Lindenstrauss embedding (with 4υ < ξ)

for set W with probability at least 1− ς provided that s > O(Vς ), where V is the number of vectors

in W . In other words, the Euclidean distance between any two vectors (matrix) β1, β2 ∈W ∈ Rp×p

is preserved up to a ±ξ by application of X. As a result, with high probability

1− ξ ≤ λmin

(
PW

(
1

n

n∑
i=1

AiA
T
i

))
≤ λmax

(
PW

(
1

n

n∑
i=1

AiA
T
i

))
≤ 1 + ξ.
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Now it remains to argue the final bound in (4.21). By (Candes and Plan, 2011), we know that

the set of p × p rank-r matrices can be discretized by a ζ-cover Sr such that |Sr| = (9
ζ )(2p+1)r.

In addition, They show that if a matrix X satisfies JL embedding by constant ξ, then X satisfies

the rank-r RIP with constant ω = O(ξ). As a result, by taking union bound (taking maximum

over all set W in (4.21)), we establish RSC/RSS constants such that M2r+r∗ ≤ µ2(1 + ω) and

m2r+r∗ ≥ µ1(1 − ω) provided that s = O(pr) and V = |Sr| which implies m = O(prpolylog(p)).

Now, In order to satisfy the assumptions in Theorem 4.5, we need to have
M2

2r+r∗

m4
2r+r∗

≤ C2(1 − ε) rr∗

for some C2 > 0 and ε defined in lemma 5.12. Thus, we have
µ42(1+ω)4

µ41(1−ω)4
≤ C2(1− ε) rr∗ which justifies

the assumption in Theorem 4.8.

4.6.3 Appendix C. Proof of Theorems in Section 4.3.4

Proof of Theorem 4.9. Let V t, V t+1, and V ∗ denote the bases for the column space of Lt, Lt+1, and

L∗, respectively. Assume ν ′ =
√

1 + 2
√
r∗√

r−r∗ . By definition of set J in the theorem, V t∪V t+1∪V ∗ ⊆

Jt := J and rank(Jt) ≤ 2r + r∗. Define b = Lt − η′PJ∇F (Lt). We have:

‖Lt+1 − L∗‖F
e1
≤ ν ′‖b− L∗‖F

≤ ν‖Lt − L∗ − η′PJ∇F (Lt)‖F
e2
≤ ν ′‖Lt − L∗ − η′PJ

(
∇F (Lt)−∇F (L∗)

)
‖F + ν ′η′‖PJ∇F (L∗)‖F

e3
≤ ν ′

√
1 +M2

2r+r∗η
′2 − 2m2r+r∗η′‖Lt − L∗‖F + ν ′η′‖PJ∇F (L∗)‖F , (4.22)

where e1 holds due to applying lemma 4.15. Moreover, e2 holds by applying triangle inequality and

e3 is obtained by combining the lower bound in (4.14) and upper bound in (4.16), i.e.,

‖Lt − L∗ − η′
(
∇JF (Lt)−∇JF (L∗)

)
‖22 ≤ (1 + η′

2
M2

2r+r∗ − 2η′m2r+r∗)‖Lt − L∗‖22.

In order that (4.22) implies convergence, we require that

ρ′ =

√
1 + 2

√
r∗√

r − r∗
√

1 +M2
2r+r∗η

′2 − 2m2r+r∗η′ < 1

. By solving this quadratic inequality with respect to η, we obtain:(
M2r+r∗

m2r+r∗

)2

≤ 1 +

√
r − r∗

2
√
r∗

,
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As a result, we obtain the the condition r ≥ C ′1

(
M2r+r∗
m2r+r∗

)4
r∗ for some C ′1 > 0. Furthermore,

since r = αr∗ for some β > 1, we conclude the condition on step size η′ as 1−
√
β′

M2r+r∗
≤ η′ ≤ 1+

√
β′

m2r+r∗

where β′ =
√
β−1√
β−1+2

for some β > 1. If we initialize at L0 = 0, then we obtain ϑ accuracy after

T = O
(

log
(
‖L∗‖F
ϑ

))
iterations.

Proof of Theorem 4.10. The proof of this theorem is a direct application of the Lemma 5.4 in

(Chandrasekaran et al., 2009) and we restate it for completeness:

Lemma 4.16. Let C denote the sample covariance matrix, then with probability at least 1 −

2 exp(−p) we have ‖C − (S∗ + L∗)−1‖2 ≤ c1

√
p
n where c1 > 0 is a constant.

By noting that ∇F (L∗) = C − (S∗ + L∗)−1 and rank(Jt) ≤ 2r + r∗ ≤ 3r, we can bound the

term on the right hand side in Theorem 4.9 as:

‖PJt∇F (L∗)‖F ≤
√

3r‖∇F (L∗)‖2 ≤ c2

√
rp

n
.

The key observation is that the objective function in (4.8) is globally strongly convex, and

when restricted to any compact psd cone, it also satisfies the smoothness condition. As a result, it

satisfies RSC/RSS conditions. Our strategy to prove Theorems 4.11 and 4.12 is to establish upper

and lower bounds on the spectrum of the sequence of estimates Lt independent of t. We use the

following lemma.

Lemma 4.17. (Yuan et al., 2014a; Boyd and Vandenberghe, 2004) The Hessian of the objective

function F (L) is given by ∇2F (L) = Θ−1 ⊗ Θ−1 where ⊗ denotes the Kronecker product and

Θ = S̄ + L. In addition if αI � Θ � βI for some α and β, then 1
β2 I � ∇2F (L) � 1

α2 I.

Lemma 4.18 (Weyl type inequality). For any two matrices A,B ∈ Rp×p, we have:

max
1≤i≤p

|σi(A+B)− σi(A)| ≤ ‖B‖2.
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If we establish an universal upper bound and lower bound on λ1(Θt) and λp(Θ
t) for all t =

1 . . . T , then we can bound the RSC constant asm2r+r∗ ≥ 1
λ1(Θt)2

and the RSS-constant asM2r+r∗ ≤
1

λp(Θt)2
using Lemma 4.17 and the definition of RSS/RSC.

Proof of Theorem 4.11. Recall that by Theorem 4.9, we have ‖Lt − L∗‖F ≤ ρ′‖Lt−1 − L∗‖F +

ν ′η′‖PJt∇F (L∗)‖F ,. By Theorem 4.10, the second term on the right hand side can be bounded by

O(
√

rp
n ) with high probability. Therefore, recursively applying this inequality to Lt (and initializing

with zero), we obtain:

‖Lt − L∗‖F ≤ (ρ′)t‖L∗‖F +
c2ν
′η′

1− ρ′

√
rp

n
. (4.23)

Since ρ′ < 1, then (ρ′)t < 1. On the other hand ‖L∗‖F ≤
√
r∗‖L∗‖2. Hence, ρt‖L∗‖F ≤

√
r∗‖L∗‖2.

Also, by the Weyl inequality, we have:

‖Lt‖2 − ‖L∗‖2 ≤ ‖Lt − L∗‖2 ≤ ‖Lt − L∗‖F . (4.24)

Combining (4.23) and (4.25) and using the fact that λ1(Lt) ≤ σ1(Lt),

λ1(Lt) ≤ ‖L∗‖2 + ‖Lt − L∗‖F

≤ ‖L∗‖2 +
√
r∗‖L∗‖2 +

c2ν
′η′

1− ρ′

√
rp

n
.

Hence for all t,

λ1(Θt) = S1 + λ1(Lt) ≤ S1 +
(

1 +
√
r∗
)
‖L∗‖2 +

c2ν
′η′

1− ρ′

√
rp

n
. (4.25)

For the lower bound, we trivially have for all t:

λp(Θ
t) = λp(S̄ + Lt) ≥ Sp. (4.26)

If we select n = O
(

1
δ2

(
ν′η′

1−ρ′
)2
rp

)
for some small constant δ > 0, then (4.25) becomes:

λ1(Θt) ≤ S1 +
(
1 +
√
r
)
‖L∗‖2 + δ.

As mentioned above, we set m2r+r∗ ≥ 1
λ21(Θt)

and M2r+r∗ ≤ 1
λ2p(Θt)

which implies
M2r+r∗
m2r+r∗

≤ λ21(Θt)
λ2p(Θt)

.

In order to satisfy the assumption on the RSC/RSS in theorem 4.9, i.e.,
M4

2r+r∗

m4
2r+r∗

≤ C ′2
r
r∗ for some
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C ′2 > 0, we need to establish a regime such that
λ81(Θt)
λ8p(Θt)

≤ C ′2 r
r∗ . As a result, to satisfy this condition,

we need to have the following condition, verifying the assumption in the theorem.

Sp ≤ S1 ≤ C ′3(
r

r∗
)
1
8Sp −

(
1 +
√
r∗
)
‖L∗‖2 − δ. (4.27)

for some constant C ′3 > 0.

Proof of Theorem 4.12. The proof is similar to the proof of theorem 4.11. Recall that by theo-

rem 4.5, we have

‖Lt+1 − L∗‖F ≤ ρ‖Lt − L∗‖F + νη‖PJt∇F (L∗)‖F ,

As before, the second term on the right hand side is bounded by O(
√

rp
n ) with high probability by

Theorem 4.10. As above, recursively applying this inequality to Lt and using zero initialization,

we obtain:

‖Lt − L∗‖F ≤ ρt‖L∗‖F +
c2νη

1− ρ

√
rp

n
.

Since ρ < 1, then ρt < 1. Now similar to the exact algorithm, ‖L∗‖F ≤
√
r∗‖L∗‖|2 and ρt1‖L∗‖F ≤

√
r∗‖L∗‖2. , Hence with high probability,

λ1(Lt) ≤ ‖L∗‖2 + ‖Lt − L∗‖F

≤
(

1 +
√
r∗
)
‖L∗‖2 +

c2νη

1− ρ

√
rp

n
, (4.28)

Hence, for all t:

λ1(Θt) = S1 + λ1(Lt) ≤ S1 +
(

1 +
√
r∗
)
‖L∗‖2 +

c2νη

1− ρ

√
rp

n
, (4.29)

Also, we trivially have:

λp(Θ
t) = λp(S̄ + Lt) ≥ Sp − a′, ∀t. (4.30)

By selecting n = O
(

1
δ′2

(
νη

1−ρ

)2
rp

)
for some small constant δ′ > 0, (4.29) can be written as follows:

λ1(Θt) ≤ S1 +
(

1 +
√
r∗
)
‖L∗‖2 + δ′,
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In order to satisfy the assumptions in Theorem 4.5, i.e.,
M4

2r+r∗

m4
2r+r∗

≤ C′′2
1−ε

r
r∗ , we need to guarantee that

λ81(Θt)
λ8p(Θt)

≤ C′′2
1−ε

r
r∗ . As a result, to satisfy this inequality, we need to have the following condition on

S1 and Sp:

Sp ≤ S1 ≤
C ′′3

(1− ε)
1
8

(
r

r∗
)
1
8 (Sp − a′)−

(
1 +
√
r∗
)
‖L∗‖2 − δ′. (4.31)

for some C ′′3 > 0. Also, we can choose RSC/RSS constant as previous case.

Proof of Theorem 4.13. Recall from (4.28) that with very high probability,

‖Lt‖2≤
(

1 +
√
r∗
)
‖L∗‖2 +

c2νη

1− ρ

√
rp

n
.

Also, we always have: λp(L
t) ≥ −‖Lt‖2. As a result:

λp(L
t) ≥ −

(
1 +
√
r∗
)
‖L∗‖2 −

c2νη

1− ρ

√
rp

n
. (4.32)

Now if the inequality
(
1 +
√
r∗
)
‖L∗‖2 + c2νη

1−ρ

√
rp
n < Sp is satisfied, then we can select 0 < a′ ≤(

1 +
√
r∗
)
‖L∗‖2 + c2νη

1−ρ

√
rp
n . The former inequality is satisfied by the assumption of Theorem 4.12

on ‖L∗‖2, i.e.,

‖L∗‖2 ≤
1

1 +
√
r∗

 Sp

1 + C4

(
(1− ε)( r∗r )

) 1
8

−
S1(C4((1− ε)( r∗r ))

1
8 )

1 + C4

(
(1− ε)( r∗r )

) 1
8

− c2νη

1− ρ

√
rp

n

 .
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CHAPTER 5. FAST AND PROVABLE ALGORITHMS FOR LEARNING

TWO-LAYER POLYNOMIAL NEURAL NETWORKS

In this chapter, we study the problem of (provably) learning the weights of a two-layer neural

network with quadratic activations. In particular, we focus on the under-parametrized regime where

the number of neurons in the hidden layer is (much) smaller than the dimension of the input. Our

approach uses a lifting trick, which enables us to borrow algorithmic ideas from low-rank matrix

estimation. In this context, we propose three novel, non-convex training algorithms. We support

our algorithms with rigorous theoretical analysis, and show that the proposed algorithms enjoy

linear convergence, fast running time per iteration, and near-optimal sample complexity. Finally,

we complement our theoretical results with several numerical experiments.

5.1 Introduction

The re-emergence of neural networks (spurred by the advent of deep learning) has had a re-

markable impact on various sub-domains of artificial intelligence (AI) object recognition in images,

natural language processing, and automated drug discovery, among many others. However, despite

the successful empirical performance of neural networks for these AI tasks, provable methods for

learning neural networks remain relatively mysterious. Indeed, training a network of even moderate

size requires solving a very large-scale, highly non-convex optimization problem.

In this chapter, we (provably) resolve several algorithmic challenges that arise in the context of

a special class of (shallow) neural networks by making connections to the better-studied problem of

low-rank matrix estimation. Our hope is that a rigorous understanding of the fundamental limits

of training shallow networks can be used as building blocks to obtain theoretical insights for more

complex networks.
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Figure 5.1: Two-layer polynomial neural network.

5.1.1 Setup

Consider a shallow (two-layer) neural network architecture, as illustrated in Figure 5.1. This

network comprises p input nodes, a single hidden layer with r neurons with activation function

σ(z), first layer weights {wj}rj=1 ⊂ Rp, and an output layer comprising of a single node and weights

{αj}rj=1 ⊂ R. If σ(z) = z2, then the above network is called a polynomial neural network (Livni

et al., 2014). More precisely, the input-output relationship between an input, x ∈ Rp, and the

corresponding output, y ∈ R, is given by:

ŷ =

r∑
j=1

αjσ(wTj x) =

r∑
j=1

αj〈wj , x〉2.

In this chapter, our focus is in the so-called “under-parameterized” regime where r � p. Our goal

is to learn this network, given a set of training input-output pairs {(xi, yi)}mi=1. We do so by finding

a set of weights {αj , wj}rj=1 that minimize the following empirical risk :

min
W∈Rr×p,α∈Rr

F (W,α) =
1

2m

m∑
i=1

(yi − ŷi)2 , (5.1)

where the rows of W and the entries of α indicate the first-and second-layer weights, respectively.

Numerous recent papers have explored (provable) algorithms to learn the weights of such a network

under distributional assumptions on the input data (Livni et al., 2014; Lin and Ye, 2016; Janzamin

et al., 2015; Tian, 2016; Zhong et al., 2016; Soltanolkotabi et al., 2017; Li and Yuan, 2017)1.

1While quadratic activation functions are rarely used in practice, stacking multiple such two-layer blocks can be
used to simulate networks with higher-order polynomial and sigmoidal activations (Livni et al., 2014).
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Clearly, the empirical risk defined in (5.1) is extremely nonconvex (involving fourth-powers of

the entries of wj , coupled with the squares of αj). However, this can be circumvented using a

clever lifting trick: if we define the matrix variable L∗ =
∑r

j=1 αjwjw
T
j , then the input-output

relationship becomes:

ŷi = xTi L∗xi = 〈xixTi , L∗〉, (5.2)

where xi ∈ Rp denotes the ith training sample. Moreover, the variable L∗ is a rank-r matrix of

size p × p Therefore, (5.1) can be viewed as an instance of learning a fixed (but unknown) rank-r

symmetric matrix L∗ ∈ Rp×p with r � p, from a small number of rank-one linear observations

given by Ai = xix
T
i . While still non-convex, low-rank matrix estimation problems such as (5.2) are

much better understood. Two specific instances in statistical learning include:

Matrix sensing and matrix completion. Reconstructing low-rank matrices from (noisy) lin-

ear measurements of the form yi = 〈Xi, L∗〉 impact several applications in control and system

identification (Fazel, 2002), collaborative filtering (Candès and Recht, 2009; Recht et al., 2010b),

and imaging. The problem (5.2) specializes the matrix sensing problem to the case where the

measurement vectors Xi are constrained to be themselves rank-one.

Covariance sketching. Estimating a high-dimensional covariance matrix, given a stream of

independent samples {st}∞t=1, st ∈ Rp, involves maintaining the empirical estimate Q = E[sts
T
t ],

which can require quadratic (O(p2)) space complexity. Alternatively, one can record a sequence of

m� p2 linear sketches of each sample: zi = xTi st for i = 1, . . . ,m. At the conclusion of the stream,

sketches corresponding to a given vector xi are squared and aggregated to form a measurement:

yi = E[z2
i ] = E[(xTi st)

2] = xTi Qxi, which is nothing but a linear sketch of Q of the form (5.2).

Again, several matrix recovery methods that “invert” such sketches exist; see (Cai and Zhang,

2015; Chen et al., 2015; Dasarathy et al., 2015).

5.1.2 Our Contributions

Here, we make concrete algorithmic progress on solving low-rank matrix estimation problems

of the form (5.2). In the context of learning polynomial neural networks, once we have estimated a
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rank-r symmetric matrix L∗, we can always produce weights {αj , wj} by an eigendecomposition of

L∗. In general, a range of algorithms for solving (5.2) (or variants thereof) exist in the literature, and

can be broadly classified into two categories: (i) convex approaches, all of which involve enforcing

the rank-r assumption in terms of a convex penalty term, such as the nuclear norm (Fazel, 2002;

Recht et al., 2010b; Cai and Zhang, 2015; Chen et al., 2015; Cai et al., 2010); (ii) nonconvex

approaches based on either alternating minimization (Zhong et al., 2015; Lin and Ye, 2016) or

greedy approximation (Livni et al., 2014; Shalev-Shwartz et al., 2011).

Both types of approaches suffer from severe computational difficulties, particularly when the

data dimension p is large. Even the most computationally efficient convex approaches require

multiple invocations of singular value decomposition (SVD) of a (potentially) large p × p matrix,

which can incur cubic (O(p3)) running time. Moreover, even the best available non-convex ap-

proaches require a very accurate initialization, and also require that the underlying matrix L∗ is

well-conditioned; if this is not the case, the running time of all available methods again inflates to

O(p3), or worse.

In this chapter, we take a different approach, and show how to leverage recent results in low-

rank approximation to our advantage (Musco and Musco, 2015; Hegde et al., 2016). Our algorithm

is also non-convex; however, unlike all earlier works, our method does not require any full SVD

calculations. Specifically, we demonstrate that a careful concatenation of randomized, approximate

SVD methods, coupled with appropriately defined gradient steps, leads to efficient and accurate

matrix estimation.

To our knowledge, this work constitutes the first nearly-linear time method for low-rank matrix

recovery from rank-one observations. Consequently, in the context of learning two-layer polynomial

networks, our method is the first to exhibit nearly-linear running time, is nearly sample-optimal for

fixed target rank r, and is unconditional (i.e., it makes no assumptions on the condition number of

L∗ or the weight matrix W ). Numerical experiments reveal that our methods yield a very attractive

tradeoff between sample complexity and running time for efficient matrix recovery.
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Table 5.1: Summary of our contributions and comparison with existing algorithms. Here, β = σ1
σr

denotes the condition number of L∗.

Algorithm Sample complexity (m) Total Running Time

Convex O(pr) O
(
p3√
ε

)
GECO N/A O

(
p2 log(p)poly(r)

ε

)
AltMin-LRROM O

(
pr4 log2(p)β2 log(1

ε )
)
O
(
mpr log(1

ε ) + p3
)

gFM O(pr3β2 log(1
ε )) O

(
mpr log(1

ε ) + p3
)

EP-ROM O
(
pr2 log4(p) log(1

ε )
)

O
(
mp2 log(1

ε )
)

AP-ROM O
(
pr3 log4(p) log(1

ε )
)

O
(
mpr log(p) log(1

ε

)
Algorithm 5.3 O (pr) O

(
mpr log(p) log(1

ε

)
5.1.3 Techniques

At a high level, our method can be viewed as a variant of the seminal algorithms proposed

in (Jain et al., 2010) and (Jain et al., 2014), which essentially perform projected (or proximal)

gradient descent with respect to the space of rank-r matrices. However, since computing SVD in

high dimensions can be a bottleneck, we cannot use this approach directly. To this end, we use

the approximation-based matrix recovery framework proposed in (Hegde et al., 2016). This work

demonstrates how to carefully integrate approximate SVD methods into singular value projection

(SVP)-based matrix recovery algorithms; in particular, algorithms that satisfy certain “head” and

“tail” projection properties (explained below in Section 5.3) are sufficient to guarantee robust and

fast convergence. Crucially, this framework removes the need to compute even a single SVD,

as opposed to factorized methods which necessarily require one or multiple SVDs, together with

stringent condition number assumptions.

However, a direct application of (projected) gradient descent does not succeed for matrix esti-

mation problems obeying (5.2); two major obstacles arise:

Obstacle 1 . It is well-known the measurement operator that maps L∗ to y does not satisfy the

so-called Restricted Isometry Property over rank-r matrices (Cai and Zhang, 2015; Chen et al.,
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2015; Zhong et al., 2015); therefore, all statistical and algorithmic correctness arguments of (Hegde

et al., 2016) no longer apply.

Obstacle 2 . The algebraic structure of the rank-one observations in (5.2) inflates the running

time of computing even a simple gradient update to O(p3) (irrespective of the algorithmic cost of

rank-r projection, whether done using exact or approximate SVDs).

We resolve Obstacle 1 by studying the concentration properties of certain linear operators of

the form of rank-one projections, leveraging an approach first proposed in (Zhong et al., 2015).

We show that a non-trivial “bias correction” step, coupled with projected descent-type methods,

within each iteration is sufficient to achieve fast (linear) convergence. To be more precise, define the

operator A such that (A(L∗))i = xTi L∗xi for i = 1, . . . ,m, where xi is a standard normal random

vector. A simple calculation shows that at any given iteration t, if Lt is the current estimate of the

underlying matrix variable, then we have:

EA∗A(Lt − L∗) = 2(Lt − L∗) + Tr(Lt − L∗)I,

where the operator Tr(·) denotes the trace of a matrix and the expectation is taken with respect

to the randomness in the xi’s. The left hand side of this equation (roughly) corresponds to the

expected value of the gradient in each iteration, and it is clear that while the gradient points in

the “correct” direction Lt − L∗, it is additionally biased by the extra Tr(.) term. Motivated by

this, we develop a new descent scheme by carefully accounting for this bias. Interestingly, the

sample complexity of our approach only increases by a mild factor (specifically, an extra factor r

together with polylogarithmic terms) when compared to the best available techniques. Moreover,

this scheme exhibits linear convergence in theory, and shows very competitive performance in

experimental simulations.

We resolve Obstacle 2 by carefully exploiting the rank-one structure of the observations. In

particular, we develop a modification of the randomized block-Krylov SVD (or BK-SVD) algorithm

of (Musco and Musco, 2015) to work for the case of certain “implicitly defined” matrices; specifically,

we design a randomized SVD routine where the input is a linear operator that is constructed using

vector-valued components. This modification, coupled with the tail-and head-projection arguments
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developed in (Hegde et al., 2016), enables us to achieve a fast per-iteration computational com-

plexity. In particular, our algorithm strictly improves over the (worst-case) per-iteration running

time of all existing algorithms; see Table 5.1.

While the above approach produces fast running time (up to poly-logarithmic factors), its

theoretical success depends on the idea of fresh samples in each iteration. Our next algorithm

removes this restriction by using the `1-loss function instead of the squared loss used in (5.1).

However, the `1-loss is non-differentiable, nor does it satisfy our previous concentration property of

the gradient. This motivates us to use the so-called RIP(`1, `2) (Foucart and Rauhut, 2013; Chen

et al., 2015; Cai and Zhang, 2015). For this, we propose a projected sub-gradient algorithm which

does not require use of fresh samples within each iteration, and enjoys linear convergence with an

optimal sample complexity.

5.2 Prior Art

Due to space constraints, we only provide here a brief (and incomplete) review of related work,

and describe how our method differs from earlier techniques.

Problems involving low-rank matrix estimation have received significant attention from the

machine learning community over the last few years; see (Davenport and Romberg, 2016) for a

recent survey. In early works for matrix recovery, the observation operator A is assumed to be

parametrized by m independent full-rank p × p matrices that satisfy certain restricted isometry

conditions (Recht et al., 2010b; Liu, 2011). In this setup, it has been established that m = O(pr)

observations are sufficient to recover an unknown rank-r matrix L∗ in (5.3) (Candes and Plan,

2011), and this scaling of sample complexity is statistically optimal.

In the context of provable methods for learning neural networks, two-layer networks have re-

ceived special attention. For instance, (Livni et al., 2014) has considered a two-layer network with

quadratic activation function (identical to the model proposed above), and proposed a greedy, im-

proper learning algorithm: in each iteration, the algorithms adds one hidden neuron to the network

until the risk falls below a threshold. While this algorithm is guaranteed to converge, its conver-
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gence rate is sublinear. Recently, in (Zhong et al., 2016), the authors have proposed a linearly

convergent algorithm for learning two-layer networks for several classes of activation functions.

They also derived an upper bound on the sample complexity of network learning which is linear

in p, and depends polynomially on r and other spectral properties of the ground-truth (planted)

weights. However, their theory does not provide convergence guarantees for quadratic functions;

our work here closes this gap. Note that our focus here is not the estimation of the weights {αj , wj}

themselves, but rather, any network that gives the same input-relationship.. As a result, our guar-

antees are stated in terms of the low-rank matrix L∗. Furthermore, unlike their algorithm, our

sample complexity does not depend on the spectral properties of ground-truth weights.

Other works have also studied similar two-layer setups, including (Janzamin et al., 2015; Tian,

2016; Soltanolkotabi et al., 2017; Li and Yuan, 2017). In contrast with these results, our framework

does not assume the over-parameterized setting where the number of hidden neurons r is greater

than p. In addition, we explicitly derive a sample complexity that is linear in p, as well as demon-

strate linear time convergence. Also, observe that if we let L∗ to be rank-1, then Problem (5.2)

is known as generalized phase retrieval for which several excellent algorithms are known (Candes

et al., 2013, 2015; Netrapalli et al., 2013). However, our problem is more challenging as it allows

L∗ to have arbitrary rank-r.

We now briefly contrast our method with other algorithmic techniques for low-rank matrix

estimation. Broadly, two classes of such techniques exist. The first class of matrix estimation

techniques can be categorized as approaches based on convex relaxation (Chen et al., 2015; Cai and

Zhang, 2015; Kueng et al., 2017; Candes et al., 2013). For instance, the authors in (Chen et al.,

2015; Cai and Zhang, 2015) demonstrate that the observation operator A satisfies a specialized

mixed-norm isometry condition called the RIP-`2/`1. Further, they show that the sample com-

plexity of matrix recovery using rank-one projections matches the optimal rate O(pr). However,

these methods advocate using either semidefinite programming (SDP) or proximal sub-gradient

algorithms (Boyd and Vandenberghe, 2004; Goldstein et al., 2014, 2015), both of which are too

slow for very high-dimensional problems.
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The second class of techniques can be categorized as non-convex approaches, which are all based

on a factorization-based approach initially advocated by (Burer and Monteiro, 2003). Here, the

underlying low-rank matrix variable is factorized as L∗ = UV T , where U, V ∈ Rp×r (Zheng and

Lafferty, 2015; Tu et al., 2016). In the Altmin-LRROM method proposed by (Zhong et al., 2015),

U and V are updated in alternative fashion. However, the setup in (Zhong et al., 2015) is different

from this chapter, as it uses an asymmetric observation model, in which observation yi is given by

yi = xTi L∗zi with xi and zi being independent random vectors. Our goal is to analyze the more

challenging case where the observation operator A is symmetric and defined according (5.3). In a

subsequent work (called the generalized factorization machine) by (Lin et al., 2017), U and V are

updated based on the construction of certain sequences of moment estimators.

Both the approaches of (Zhong et al., 2015) and (Lin et al., 2017) require a spectral initialization

which involves running a rank-r SVD on a given p×p matrix, and therefore the running time heavily

depends on the condition number (i.e., the ratio of the maximum and the minimum nonzero singular

values) of L∗. To our knowledge, only three works in the matrix recovery literature require no full

SVDs (Bhojanapalli et al., 2016b; Hegde et al., 2016; Ge et al., 2016). However, both (Bhojanapalli

et al., 2016b) and (Hegde et al., 2016) assume that the restricted isometry property is satisfied,

which is not applicable in our setting. Moreover, (Ge et al., 2016) makes stringent assumptions on

the condition number, as well as the coherence, of the unknown matrix.

Finally, we mention that a matrix estimation scheme using approximate SVDs (based on

Frank-Wolfe type greedy approximation) has been proposed for learning polynomial neural net-

works (Shalev-Shwartz et al., 2011; Livni et al., 2014). Moreover, this approach has been shown

to compare favorably to typical neural network learning methods (such as stochastic gradient de-

scent). However, the rate of convergence is sub-linear, and they provide no sample-complexity

guarantees. Indeed, the main motivating factor of our approach was to accelerate the running time

of such greedy approximation techniques. We complete this line of work by providing (a) rigorous

statistical analysis that precisely establishes upper bounds on the number of samples required for
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learning such networks, and (b) an algorithm that provably exhibits linear convergence, as well as

nearly-linear per iteration running time.

5.3 Main Results

5.3.1 Preliminaries

Let us first introduce some notation. Throughout this chapter, ‖ · ‖F and ‖ · ‖2 denote the

matrix Frobenius and spectral norm, respectively, and Tr(·) denotes matrix trace. The phrase

“with high probability” indicates an event whose failure rate is exponentially small. We assume

that the training data samples (x, y) obey a generative model (5.2) written as:

y =
r∑
j=1

α∗jσ(〈w∗j , x〉) = xTL∗x+ e (5.3)

where L∗ ∈ Rp×p is the “ground-truth” matrix (with rank equal to r). Define A : Rp×p → Rm such

that:

A(L∗) = [xT1 L∗x1, x
T
2 L∗x2, . . . , x

T
mL∗xm]T ,

and each xi
i.i.d∼ N (0, I) is a normal random vector in Rp for i = 1, . . . ,m. The adjoint operator of

A is defined as A∗(y) =
∑m

i=1 yixix
T
i . Here, e ∈ Rm denotes an additive noise term; throughout the

chapter (for the purpose of analysis) we assume that e is zero-mean, subgaussian with i.i.d entries,

and independent of xi’s. The goal is to learn the rank-r matrix parameter L∗ from as few samples

as possible.

In our analysis, we require the operators A and A∗ to satisfy the following regularity condition

with respect to the set of low-rank matrices. We call this the Conditional Unbiased Restricted

Isometry Property, abbreviated as CU-RIP(ρ):

Definition 5.1. Consider fixed rank-r matrices L1 and L2. Then, A is said to satisfy CU-RIP(ρ)

if there exists 0 < ρ < 1 such that

∥∥∥L1 − L2 −
1

2m
A∗A(L1 − L2)− 1

2m
1T (A(L1)−A(L2)) I

∥∥∥
2
≤ ρ
∥∥∥L1 − L2

∥∥∥
2
.
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Algorithm 5.1 EP-ROM

Inputs: y, number of iterations K, independent data samples {xt1, xt2 . . . , xtm} for t = 1, . . . ,K,

rank r

Outputs: Estimates L̂

Initialization: L0 ← 0, t← 0

Calculate: ȳ = 1
m

∑m
i=1 yi

while t ≤ K do

Lt+1 = Pr
(
Lt − 1

2m

∑m
i=1

(
(xti)

TLtx
t
i − yi

)
xti(x

t
i)
T − ( 1

2m1TA(Lt)− 1
2 ȳ)I

)
t← t+ 1

end while

Return: L̂ = LK

Let Ur denote the set of all rank-r matrix subspaces, i.e., subspaces of Rp×p which are spanned

by any r atoms of the form uvT where u, v ∈ Rp are unit `2-norm vectors. We use the idea of head

and tail approximate projections with respect to Ur first proposed in (Hegde et al., 2015b), and

instantiated in the context of low-rank approximation in (Hegde et al., 2016).

Definition 5.2 (Approximate tail projection). T : Rp×p → Ur is a ε-approximate tail projection

algorithm if for all L ∈ Rp×p, T returns a subspace W = T (L) that satisfies: ‖L − PWL‖F ≤

(1 + ε)‖L− Lr‖F , where Lr is the optimal rank-r approximation of L.

Definition 5.3 (Approximate head projection). H : Rp×p → Ur is a ε-approximate head projection

if for all L ∈ Rp×p, the returned subspace V = H(L) satisfies: ‖PV L‖F ≥ (1− ε)‖Lr‖F , where Lr

is the optimal rank-r approximation of L.

We also need the following mixed RIP definition due to (Foucart and Rauhut, 2013; Chen et al.,

2015; Cai and Zhang, 2015) for our third algorithm, proposed in Section 5.3.4.

Definition 5.4 (RIP(`1, `2) for low-rank matrices). A linear operator B satisfies RIP(`1, `2) if for

any two rank-r matrices L1 and L2, there exists constants 0 < α < β such the following holds:

α‖L1 − L2‖F ≤ 1
m‖B(L1 − L2)‖1 ≤ β‖L1 − L2‖F .

5.3.2 Algorithms and Theoretical Results
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We now propose methods to estimate L∗ given knowledge of {xi, yi}mi=1. Our first method

is somewhat computationally inefficient, but achieves very good sample complexity and serves to

illustrate the overall algorithmic approach. Consider the non-convex, constrained risk minimization

problem:

min
L∈Rp×p

F (L) =
1

2m

m∑
i=1

(
yi − xTi Lxi

)2
s.t. rank(L) ≤ r.

(5.4)

To solve this problem, we first propose an algorithm that we call Exact Projections for Rank-One

Matrix recovery, or EP-ROM, described in pseudocode form in Algorithm 5.12.

We now analyze this algorithm. First, we provide a theoretical result which establishes statistical

and optimization convergence rates of EP-ROM. More precisely, we derive an upper bound on the

estimation error (measured using the spectral norm) of recovering L∗. We defer all the proofs to

the appendix.

Theorem 5.5 (Linear convergence of EP-ROM). Consider the sequence of iterates (Lt) obtained

in EP-ROM. Assume that in each iteration the linear operator A satisfies CU-RIP(ρ) for some

0 < ρ < 1
2 , then EP-ROM outputs a sequence of estimates Lt such that:

‖Lt+1 − L∗‖2 ≤ q
∥∥Lt − L∗∥∥2

+
1

2m
(|1T e|+

∥∥A∗e∥∥
2
), (5.5)

where 0 < q < 1.

The contraction factor, q, in Equation (5.5) can be arbitrary small if we choose m sufficiently

large, and we elaborate it in Theorem (5.7). The second and third term in (5.5) represent the

statistical error rate. In the next Theorem, we show that these error terms can be suitably bounded.

Furthermore, Theorem 5.5 implies (via induction) that EP-ROM exhibits linear convergence; please

see Corollary 5.8.

Theorem 5.6 (Bounding the statistical error of EP-ROM). Consider the generative model (5.3)

with zero-mean subgaussian noise e ∈ Rm with i.i.d. entries (and independent of the xi’s) such

2In Alg 5.1, Pr denotes the projection operator onto the set of rank-r matrices.
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that τ = max1≤j≤m ‖ej‖ψ2 (Here, ‖ · ‖ψ2 denotes the ψ2-norm; see Definition 5.14 in the appendix).

Then, with probability at least 1− γ, we have:

1

m
|1T e|+

∥∥∥ 1

m
A∗e

∥∥∥
2
≤ C ′′τ

√
p log2 p

m
log(

p

γ
). (5.6)

where C ′′τ > 0 is constant which depends on τ .

To establish linear convergence of EP-ROM, we assume that the CU-RIP holds at each iteration.

The following theorem certifies this assumption.

Theorem 5.7 (Verifying CU-RIP). At any iteration t of EP-ROM, with probability at least 1− ξ,

CU-RIP(ρ) is satisfied with 0 < ρ < 1
2 provided that m = O

(
1
δ2
pr2 log3 p log(pξ )

)
for some δ > 0.

Integrating the above results, together with the assumption of availability of a batch of m

independent samples in each iteration, we obtain the following corollary formally establishing linear

convergence. We acknowledge that this assumption of “fresh samples” is somewhat unrealistic and

is an artifact of our proof techniques; nonetheless, it is a standard mechanism for proofs for non-

convex low-rank matrix estimation (Hardt, 2014; Zhong et al., 2016)

Corollary 5.8. After K iterations, with high probability the output of EP-ROM satisfies:

‖LK − L∗‖2 ≤ qK‖L∗‖2 +
C ′′τ

1− q

√
p log3 p

m
. (5.7)

where C ′′τ is given in (5.6). Thus, under all the assumptions in theorem 5.5, to achieve ε-

accuracy for estimation of L∗ in terms of the spectral norm, EP-ROM needs K = O(log(‖L∗‖2ε ))

iterations. Based on Theorems 5.6, 5.7, and Corollary 5.8, the sample complexity of EP-ROM

scales as m = O
(
pr2 log4 p log(1

ε )
)
.

While EP-ROM exhibits linear convergence, the per-iteration complexity is still high since it

requires projection onto the space of rank-r matrices, which necessitates the application of SVD. In

the absence of any spectral assumptions on the input to the SVD, the per-iteration running time

of EP-ROM can be cubic, which can be prohibitive. Overall, we obtain a running time of Õ(p3r2)

in order to achieve ε-accuracy (please see Section 5.6.3 in the appendix for a longer discussion).
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Algorithm 5.2 AP-ROM

Inputs: y, number of iterations K, independent data samples {xt1, xt2 . . . , xtm} for t = 1, . . . ,K,

rank r

Outputs: Estimates L̂

Initialization: L0 ← 0, t← 0

Calculate: ȳ = 1
m

∑m
i=1 yi

while t ≤ K do

Lt+1 = T
(
Lt −H

(
1

2m

∑2m
i=1

(
(xti)

TLtx
t
i − yi

)
xti(x

t
i)
T − ( 1

2m1TA(Lt)− 1
2 ȳ)I

))
t← t+ 1

end while

Return: L̂ = LK

To reduce the running time, one can instead replace a standard SVD routine with approximation

heuristics such as Lanczos iterations (Lanczos, 1950); however, these may not result in algorithms

with provable convergence guarantees. Instead, following (Hegde et al., 2016), we can use a pair

of inaccurate rank-r projections (in particular, tail-and head-approximate projection operators).

Based on this idea, we propose our second algorithm that we call Approximate Projection for Rank

One Matrix recovery, or AP-ROM. We display the pseudocode of AP-ROM in Algorithm 5.2.

The specific choice of approximate SVD algorithms that simulate the operators T (.) and H(.)

is flexible. We note that tail-approximate projections have been widely studied in the numerical

linear algebra literature (Clarkson and Woodruff, 2013; Mahoney and Drineas, 2009; Rokhlin et al.,

2009); however, head-approximate projection methods are less well-known. In our method, we

use the randomized Block Krylov SVD (BK-SVD) method proposed by (Musco and Musco, 2015),

which has been shown to satisfy both types of approximation guarantees (Hegde et al., 2016). One

can alternatively use LazySVD, recently proposed by (Allen-Zhu and Li, 2016), which also satisfies

both guarantees. The nice feature of these methods is that their running time is independent of

the spectral gap of the matrix. We leverage this property to show asymptotic improvements over

other fast SVD methods (such as the power method).

We briefly discuss the BK-SVD algorithm. In particular, BK-SVD takes an input matrix with

size p × p with rank r and returns a r-dimensional subspace which approximates the top right r

singular vectors of the input. Mathematically, if A ∈ Rp×p is the input, Ar is the best rank-r
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approximation to it, and Z is a basis matrix that spans the subspace returned by BK-SVD, then

the projection of A into Z, B = ZZTA satisfies the following relations:

‖A−B‖F ≤ (1 + ε)‖A−Ar‖F ,

|uTi AATui − ziAAT zi| ≤ εσ2
r+1,

where ε > 0 is defined as the tail and head projection approximate constant, and ui denotes

the ith right eigenvector of A. In Appendix-B of (Hegde et al., 2016), it has been shown that

the per-vector guarantee can be used to prove the approximate head projection property, i.e.,

‖B‖F ≥ (1− ε)‖Ar‖F .

We now establish that AP-ROM also exhibits linear convergence, while obeying similar statis-

tical properties as EP-ROM. We have the following results:

Theorem 5.9 (Convergence of AP-ROM). Consider the sequence of iterates (Lt) obtained in AP-

ROM. Assume that in each iteration t, A satisfies CU-RIP(ρ′), then AP-ROM outputs a sequence

of estimates Lt such that:

‖Lt+1 − L∗‖F ≤ q′1‖Lt − L∗‖F + q′2
(
|1T e|+

∥∥A∗e∥∥
2

)
, (5.8)

where q′1 = (2 + ε)(ρ′ +
√

1− φ2), q′2 =
√
r

2m

(
2− ε+ φ(2−ε)(2+ε)√

1−φ2

)
, and φ = (1− ε)(1− ρ′)− ρ′.

Similar to Theorem 5.7, we can show that CU-RIP is satisfied in each iteration of AP-ROM

with probability at least 1 − ξ, provided that m = O
(

1
δ2
pr3 log3 p log(pξ )

)
. Hence, we require a

factor-r increase compared to before. Overall, we have the following result:

Corollary 5.10. The output of AP-ROM satisfies the following after K iterations with high prob-

ability:

‖LK − L∗‖F ≤ (q′1)K‖L∗‖F +
C ′′τ q

′
2

1− q′1

√
pr log3 p

m
. (5.9)

where q′1 and q′2 have been defined in Theorem 5.8.

Hence, under the assumptions in Theorem 5.9, in order to achieve ε-accuracy in the estimation of

L∗ in terms of Frobenius norm, AP-ROM requires K = O(log(‖L∗‖2ε )) iterations. From Theorem 5.8
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and Corollary 5.10, we observe that the sample-complexity of AP-ROM (i.e., the number of samples

m to achieve a given accuracy) slightly increases as m = O
(
pr3 log4 p log(1

ε )
)
.

5.3.3 Improving Running Time

The above analysis of AP-ROM shows that instead of using exact rank-r projections (as in

EP-ROM), one can use instead tail and head approximate projection which is implemented by

the BK-SVD method of (Musco and Musco, 2015). The running time for this method is given by

Õ(p2r) if r � p. While the running time of the projection step is gap-independent, the calculation

of the gradient (i.e., the input to the head projection method H) is itself the major bottleneck.

In essence, this is related to the calculation of the adjoint operator, A∗(d) =
∑m

i=1 d
(i)xix

T
i , which

requires O(p2) operations for each sample. Coupled with the sample-complexity of m = Ω(pr3),

this means that the running time per-iteration scaled as Ω(p3r3), which overshadows any gains

achieved during the projection step (please see Section 5.6.3 in the appendix for more discussion).

To address this challenge, we propose a modified version of BK-SVD for head approximate

projection which uses the special rank-one structures involved in the calculation of the gradients.

We call this method Modified BK-SVD, or MBK-SVD. The basic idea is to implicitly evaluate

each Krylov-subspace iteration within BK-SVD, and avoid any explicit calculation of the adjoint

operator A∗ applied to the current estimate. Due to space constraints, the pseudocode as well as

the running time analysis of MBK-SVD is deferred to the appendix. We have:

Theorem 5.11. AP-ROM (with modified BK-SVD) runs in time K = O
(
p2r4 log2(1

ε )polylog(p)
)
.

5.3.4 Achieving Optimal Sample Complexity

In the previous section, we saw that both our proposed algorithms result in suboptimal sample

complexity by logarithmic factors, primarily because their analysis requires a set of fresh samples

in each iteration. In this section, we propose a third algorithm that removes this assumption and

achieves asymptotically optimal sample complexity, i.e., m = O(pr). Referring back to Table 5.1,

we observe that convex methods (Chen et al., 2015; Cai and Zhang, 2015) exhibits the same sample
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Algorithm 5.3

Initialization: L0 ← 0, t← 0

while t ≤ K do

Lt+1 = Tκr
(
Lt − ηt

mB
∗sgn(B(Lt)− y)

)
t← t+ 1

end while

Return: L̂ = LK

complexity, but are very slow. However, we show that our new algorithm enjoys a fast running

time.

To overcome the issue of fresh samples, our key intuition is to replace squared loss with the

absolute deviation loss function (i.e., `1-loss), and the CU-RIP with the RIP(`1, `2). For simplicity,

in this section we ignore noise, while noting that our analysis seamlessly carries over to the noisy

case with a somewhat more tedious (but straightforward) extension.

We introduce a (slightly) different observation model: y′ = B(L∗), where B : Rp×p → Rm

denotes a linear operator such that B(L)i = A(L)2i−A(L)2i−1, with A(.)i denotes the ith entry of

vector A(.) as defined in observation model (5.3). It is easy to see that B can be implemented by

doubling the number of training samples. The reason why B is constructed in this way is inspired

by (Chen et al., 2015), where the authors have shown that B satisfies RIP(`1, `2) if the number

of samples m = O(pr). Based on the above model, we consider the following risk minimization

problem:

min
L∈Rp×p

F (L) =
1

m
‖y − B(L)‖1 s.t. rank(L) ≤ r. (5.10)

To solve this problem, we propose an approximate projected sub-gradient algorithm, displayed in

pseudocode as Algorithm 5.3.

Compared to the previous algorithms, Alg. 5.3 has three major differences. First, it has only one

approximation operator – an approximate tail projection T – which projects its argument onto a

larger set of matrices with rank κr for κ > 1. To implement this operator, we use the modified BK-

SVD algorithm similar to the discussion above. The idea of projecting onto a larger space was first

proposed by (Jain et al., 2014), and subsequently has been extended for approximate tail projections

by (Soltani and Hegde, 2017b). In that work, we showed that this idea essentially removes the need
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for an inner “head” projection. Second, the objective function in (5.10) is not differentiable; hence,

we have to use a sub-gradients which, for our case, is given by ∂F (L) = 1
mB
∗sgn(B(Lt)−y). Third,

Algorithm 5.3 requires a time-varying step-size ηt specified below (Here, B∗ denotes the adjoint

operator of B).

We now prove that with sufficiently many samples, Algorithm 5.3 converges linearly, and at

termination, provides an accurate estimate of the true low-rank matrix. This proof complements

the theoretical analysis of (Chen et al., 2015; Cai and Zhang, 2015) with a simple and easily

implementable algorithm with provably fast convergence guarantees. For establishing the proof,

we need the following Lemma, proved in (Soltani and Hegde, 2017b) and adapted to our notation.

Lemma 5.12. Let κ > (1 + 1
1−ε). For any matrices L,L∗ ∈ Rp×p with rank(L∗) = r, we have

‖Tκr(L)− L∗‖2F ≤
(

1 +
2√

1− ε
√
κ− 1

)
‖L− L∗‖2F ,

where T : Rp×p → Uκr denotes the approximate tail projection defined in Definition 5.2 and ε > 0

is the corresponding approximation ratio.

This lemma says that the near-contraction factor ν = 1 + 2√
1−ε
√
κ−1

can be made arbitrary

close to 1, provided that we increase the parameter κ accordingly. We now establish the linear

convergence of Algorithm 5.3:

Theorem 5.13. Suppose that the linear map B is constructed such that it satisfies RIP(`1, `2)

property with constants α and β in each iteration. Set κ > 1+max
{4
(

(α
2

β2
)−1

)2
1−ε , 1

1−ε

}
. Choose step

size as ηt = ‖B(Lt)−y‖1
β2 . Then, Algorithm 5.3 produces a sequence of estimates Lt for t = 1, 2 . . .

such that

‖Lt+1 − L∗‖2 ≤ λ‖Lt − L∗‖2. (5.11)

where λ =
√
ν(1− α2

β2 ).

The RIP assumption for B is justified by Proposition 1 in (Chen et al., 2015), and the fact that

in each iteration, the input matrix of B is a matrix with rank at most equals to 2κr + r∗ (see the

proof). In addition, the running time of Algorithm 5.3 scales as O(p2r2log(p) log(1
ε )) as a result of

implementing T with MBK-SVD.
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Figure 5.2: Comparison of algorithms. (a) Phase transition plot with p = 100. (b) Evolution of

the objective function versus number of iterations with p = 100, m = 8500, and noise level σ = 0.1.

(c) Running time of the algorithm with p = 1000 and m = 75000.

5.4 Experimental Results

We illustrate some experiments to support our proposed algorithms. We compare EP-ROM and

AP-ROM with convex (nuclear norm) minimization as well as the gFM algorithm of (Lin and Ye,

2016). To solve the nuclear norm minimization, we use FASTA (Goldstein et al., 2014, 2015) which

efficiently implements an accelerated proximal sub-gradient method. For AP-ROM, we consider

our proposed modified BK-SVD method (MBK-SVD). In addition, SVD and SVDS denote the

projection step being used in EP-ROM. In all the experiments, we generate a low-rank matrix,

L∗ = UUT , such that U ∈ Rp×r with r = 5 where the entries of U is randomly chosen according to

the standard normal distribution.

Figures 5.2(a) and 5.2(b) show the phase transition of successful recovery as well as the evolu-

tion of the objective function, 1
2‖y − A(Lt)‖22 versus the iteration count t for five algorithms. In

figure 5.2(a), we have used 50 Monte Carlo trials and the phase transition plot is generated based

on the empirical probability of success; here, success is when the relative error between L̂ (the

estimate of L∗) and the ground truth L∗ (measured in terms of spectral norm) is less than 0.05.

For solving convex nuclear norm minimization using FASTA, we set the Lagrangian parameter, µ

i.e., µ‖L‖∗ + 1
2‖y − AL‖

2
F via a grid search. In Figure 5.2(a), there is no additive noise. As we

can see in this Figure, the phase transition for the convex method and Alg 5.3 has comparable
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phase transition as predicted by theory, and they are slightly better than those for non-convex

algorithms, which is consistent with known theoretical results. However, the convex method is

improper, i.e., the rank of L̂ is much higher than the target rank. In Figure 5.2(b) we consider an

additive standard normal noise with standard deviation equal to 0.1, and average over 10 Monte

Carlo trials. As illustrated in this plot, all non-convex algorithm have much better performance in

decreasing the objective function compared to convex method.

Finally, in Figure 5.2(c), we compare the algorithms in the high-dimensional regime where

p = 1000, m = 75000, and r = 5 in terms of running time. We let all the algorithms run 15

iterations, and then compute the CPU time in seconds for each of them. The y-axis denotes the

logarithm of relative error in spectral norm and we report averages over 10 Monte Carlo trials. As

we can see, convex methods are the slowest (as expected); the non-convex methods are comparable

to each other, while MBK-SVD is the fastest. This plot verifies that our modified head approximate

projection routine is faster than other non-convex methods, which makes it a promising approach

for high-dimensional matrix recovery applications.

5.5 Conclusion

It seems plausible that the matrix-based techniques of this chapter can be extended to learn

networks with similar polynomial-like activation functions (such as the squared ReLU). Moreover,

similar algorithms can be plausibly used to train multi-layer networks using a greedy (layer-by-

layer) learning strategy. Finally, it will be interesting to integrate our methods with practical

approaches such as stochastic gradient descent (SGD).

5.6 Appendix. Overview

Below, the expression C +D for sets C and D refers to the Minkowski sum of two sets, defined

as C +D = {c+ d | c ∈ C, d ∈ D} for given sets C and D. For any given set U ∈ Rp×p we denote

the orthogonal projection onto U by PU . Also, M(Ur) denotes the set of vectors associated with
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Ur, the set of all rank-r matrix subspaces. In addition, we denote the {p, q}th entry of matrix B

and pth entry of vector x as B(pq) and x(p), respectively.

Proof of Theorem 5.5. Here we show that the error in the estimate of L∗ decreases in one iteration.

Define b as follows:

b = Lt −
1

2m

2m∑
i=1

(
xiLtx

T
i − yi

)
xix

T
i − (

1

2m
1TA(Lt)−

1

2
ȳ)I

= Lt −
1

2m
A∗(A(Lt)− y) + (

1

2m
1TA(Lt)−

1

2
ȳ)I.

Thus, we have:

∥∥Lt+1 − L∗
∥∥

2
≤
∥∥Lt+1 − b

∥∥
2

+
∥∥b− L∗∥∥2

a1
≤ 2
∥∥b− L∗∥∥2

≤ 2
∥∥Lt − L∗ − 1

2m
A∗(A(Lt)− y) + (

1

2m
1TA(Lt)−

1

2
ȳ)I
∥∥

2

a2
≤ 2
∥∥Lt − L∗ − 1

2m
A∗A(Lt − L∗) + (

1

2m
1TA(Lt)−

1

2
ȳ)I
∥∥

2
+

1

m

∥∥PJA∗e∥∥2

a3
≤ 2ρ

∥∥Lt − L∗∥∥2
+

1

m
(|1T e|+

∥∥A∗e∥∥
2
), (5.12)

above, a1 holds since Lt+1 is generated by projecting onto the set of matrices with rank r, and by

definition of J , Lt+1 also has the minimum Euclidean distance to b over all matrices with rank

r; a2 holds by the definition of y from (5.3) and the triangle inequality; finally, a3 holds by the

CU-RIP assumption in the theorem. By Letting 0 < q = 2ρ < 1, the proof is completed.

Proof of Corollary 5.8. First, we note that by our assumption on η in Theorem 5.5, q1 < 1. Since

EP-ROM uses fresh samples in each iteration, Lt−L∗ is independent of the sensing vectors, xi’s for

all t. On the other hand, from Theorem 5.7, the CU-RIP holds with probability 1− ξ. As a result,

by a union bound over the K iterations of the algorithm, the CU-RIP holds after K iterations with

probability at least 1−Kξ. By recursively applying inequality (5.5) (with zero initialization) and

applying Theorem 5.6, we obtain the claimed result.
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Proof of Theorem 5.9. Assume that V := Vt = H (A∗(A(Lt)− y)− Tr(Lt − ȳ)I) and Y ∈M(U2r)

such that Lt − L∗ ∈ Y and. Also, define

b′ = Lt −H

(
1

m

2m∑
i=1

(
xiLtx

T
i − yi

)
xix

T
i − (

1

2m
1TA(Lt)−

1

2
ȳ)I

)

= Lt −
1

2m
H
(
A∗(A(Lt)− y)− (

1

2m
1TA(Lt)−

1

2
ȳ)I

)
.

Furthermore, by definition of approximate tail projection, Lt ∈M(Ur). Now, we have:

‖Lt+1 − L∗‖F = ‖L∗ − T (b′)‖F

≤ ‖L∗ − b′‖F + ‖b′ − T (b′)‖F
a1
≤ (2 + ε)‖b′ − L∗‖F

= (2 + ε)
∥∥∥Lt − L∗ −H( 1

2m
A∗(A(Lt)− y)− (

1

2m
1TA(Lt)−

1

2
ȳ)I

)∥∥∥
F

a2= (2 + ε)
∥∥∥Lt − L∗ − PV ( 1

2m
A∗(A(Lt)− y)− (

1

2m
1TA(Lt)−

1

2
ȳ)I

)∥∥∥
F
,

where a1 is implied by the triangle inequality and the definition of approximate tail projection, and

inequality a2 holds by the definition of approximate head projection. Next, we have:

‖Lt+1 − L∗‖F
a3
≤ (2 + ε)

∥∥∥PV (Lt − L∗) + PV ⊥(Lt − L∗)− PV
(

1

2m
A∗(A(Lt)− y)− (

1

2m
1TA(Lt)−

1

2
ȳ)I

)∥∥∥
F

a4
≤ (2 + ε)

∥∥∥PV (Lt − L∗)− PV
(

1

2m
A∗A(Lt − L∗)− (

1

2m
1TA(Lt)−

1

2
ȳ)I

)∥∥∥
F

+ (2 + ε)
∥∥∥PV ⊥(Lt − L∗)

∥∥∥
F

+
2 + ε

2m

∥∥∥PVA∗e∥∥∥
F

a5
≤ (2 + ε)

∥∥∥PV+Y

(
Lt − L∗ − (

1

2m
A∗A(Lt − L∗)−

1

2m
1TA(Lt − L∗)I)

)∥∥∥
F

+ (2 + ε)
∥∥∥PV ⊥(Lt − L∗)

∥∥∥
F

+
2 + ε

2m

(
|1T e|+

∥∥∥PVA∗e∥∥∥
F

)
, (5.13)

where a3 follows by decomposing the residual Lt − L∗ on the two subspaces V and V ⊥, and a4 is

due to the triangle inequality, the fact that Lt − L∗ ∈ Y , and V ⊆ V + Y .
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Now, we need to bound the three terms in (5.13). The third and fourth terms can be bounded

by using Theorem 5.6 which we will use in Corollary 5.10. For the first term, we have:

(2 + ε)
∥∥∥PV+Y

(
Lt − L∗ − (

1

2m
A∗A(Lt − L∗)−

1

2m
1TA(Lt − L∗)I)

)∥∥∥
F

a1
≤ (2 + ε)

∥∥∥Lt − L∗ − (
1

2m
A∗A(Lt − L∗)−

1

2m
1TA(Lt − L∗)I)

∥∥∥
F

a2
≤ (2 + ε)ρ′

∥∥∥Lt − L∗∥∥∥
F
, (5.14)

above, a1 holds by the properties of the Frobenius and spectral norm, and a2 is due to the CU-RIP

assumption in the theorem similar to (5.12). To bound the second term in (5.13), (1+cT )
∥∥∥PV ⊥(Lt−

L∗)
∥∥∥
F

, we give upper and lower bounds for
∥∥∥PV ( 1

2mA
∗(A(Lt)− y)− ( 1

2m1TA(Lt)− ȳ)I
) ∥∥∥

F
as

follows:∥∥∥PV ( 1

2m
A∗(A(Lt)− y)− (

1

2m
1TA(Lt)− ȳ)I

)∥∥∥
F

a1
≥ (1− ε)

∥∥∥PY ( 1

2m
A∗(A(Lt)− y)− (

1

2m
1TA(Lt)− ȳ)I

)∥∥∥
F

a2
≥ (1− ε)

∥∥∥PY ( 1

2m
A∗A(Lt − L∗)−

1

2m
1TA(Lt − L∗)I

)∥∥∥
F
− 1− ε

2m
|1T e| − 1− ε

2m

∥∥∥PVA∗e∥∥∥
F

a3
≥ (1− ε)(1− ρ′)

∥∥∥Lt − L∗∥∥∥
F
− 1− ε

2m

(
|1T e|+

∥∥∥PVA∗e∥∥∥
F

)
, (5.15)

above, a1 holds by the definition of approximate head projection, a2 is followed by triangle inequal-

ity, a3 is due to Corollary 5.19, and finally a4 holds due to the fact that rank(Lt − L∗) ≤ 2r. For

the upper bound, we have:∥∥∥PV ( 1

2m
A∗(A(Lt)− y)− (

1

2m
1TA(Lt)− ȳ)I

)∥∥∥
F

a1
≤
∥∥∥PV+Y

(
1

2m
A∗A(Lt − L∗)−

1

2m
1TA(Lt − L∗)I

)
− PV+Y (Lt − L∗)

∥∥∥
F

+
∥∥∥PV (Lt − L∗)

∥∥∥
F

+
1

2m

(
|1T e|+

∥∥∥PVA∗e∥∥∥
F

)
a2
≤
∥∥∥Lt − L∗ − 1

2m
A∗(A(Lt)− y) +

1

2m
1TA(Lt − L∗)I

∥∥∥
F

+
∥∥∥PV (Lt − L∗)

∥∥∥
F

+
1

2m

(
|1T e|+

∥∥∥PVA∗e+
∥∥∥
F

)
a3
≤ ρ′

∥∥∥Lt − L∗∥∥∥
F

+
∥∥∥PV (Lt − L∗)

∥∥∥
F

+
1

2m

(
|1T e|+

∥∥∥PVA∗e∥∥∥
F

)
, (5.16)

above, a1 holds by triangle inequality and the fact that projection onto the extended subspace V +Y

(V ⊆ V +Y ) does not decrease the Frobenius norm, a2 is due to the inequality ‖AB‖F ≤ ‖A‖2‖B‖F ,
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and finally a3 is followed by CU-RIP assumption and the fact that rank(Lt − L∗) ≤ 2r. Putting

together (5.15) and (5.16), we obtain:∥∥∥PV (Lt − L∗)
∥∥∥
F
≥
(
(1− ε)(1− ρ′)− ρ′

) ∥∥∥Lt − L∗∥∥∥
F
− 2− ε

2m

(
|1T e|+

∥∥∥PVA∗e∥∥∥
F

)
. (5.17)

By the Pythagoras theorem, we know
∥∥∥PV (Lt−L∗)

∥∥∥2

F
+
∥∥∥PV ⊥(Lt−L∗)

∥∥∥2

F
=
∥∥∥Lt−L∗∥∥∥2

F
, and

hence we can bound the second term in (5.13). To use this fact, we apply (14) in (Hegde et al.,

2016) which results:

(2 + ε)
∥∥∥PV ⊥(Lt − L∗)

∥∥∥
F
≤ (2 + ε)

√
1− φ2

∥∥∥Lt − L∗∥∥∥
F

+
φ(2− ε)(2 + ε)

2m
√

1− φ2

(
|1T e|+

∥∥∥PVA∗e∥∥∥
F

)
,

(5.18)

where φ = (1− ε)(1− ρ′)− ρ′. Putting all the bounds in (5.14), and (5.18) altogether, we obtain:

‖Lt+1 − L∗‖F ≤
(

(2 + ε)ρ′ + (2 + ε)
√

1− φ2
)∥∥∥Lt − L∗∥∥∥

F

+

√
r

2m

(
2− ε+

φ(2− ε)(2 + ε)√
1− φ2

)(
|1T e|+

∥∥∥A∗e∥∥∥
2

)
= q′1

∥∥∥Lt − L∗∥∥∥
F

+ q′2

(
|1T e|+

∥∥∥A∗e∥∥∥
2

)
. (5.19)

We choose q′1 = (2 + ε)(ρ′ +
√

1− φ2), and q′2 =
√
r

2m

(
2− ε+ φ(2−ε)(2+ε)√

1−φ2

)
. Now in order to have

convergence, we have to make sure that 0 < φ < 1 and q′1 < 1. These conditions are achieved if we

let choose m sufficiently large such that ρ′ < 1
2+ε −

√
1− φ2. The completes the proof.

Proof of Corollary 5.10. The proof is similar to Corollary 5.8, and follows by using CU-RIP over K

iterations which is guaranteed to be held by using fresh samples in each iteration. Finally, by using

induction, zero initialization, and Theorem 5.6, we obtain the claimed result in the corollary.

5.6.1 Appendix A. Supporting Lemmas and Theorems

For proving the lemmas in Section 5.6.2, we include some definitions and well-known Bernstein

type inequalities for random variables and matrices. We restate these inequalities for completeness.

Please see (Vershynin, 2010; Tropp, 2015) for more details.
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Definition 5.14. (Subgaussian and Subexponential random variables.) A random variable X is

called subgaussian if it satisfies the following:

E exp

(
cX2

‖X‖2ψ2

)
≤ 2,

where ‖X‖ψ2 denotes the ψ2-norm which is defined as follows:

‖X‖ψ2 = sup
p≥1

1
√
p

(E|X|p)
1
p .

Furthermore, a random variable X is subexponential if it satisfies the following relation:

E exp

(
cX

‖X‖ψ1

)
≤ 2,

where ‖X‖ψ1 denotes the ψ1-norm, defined as follows:

‖X‖ψ1 = sup
p≥1

1

p
(E|X|p)

1
p .

In the above expressions, c > 0 is an absolute constant.

We note that the product of two standard normal random variables which is a χ2 random

variable satisfies the subexponential random variable definition with ψ1-norm equals to 2.

Lemma 5.15. (Bernstein-type inequality for random variables). Let X1, X2, . . . , Xn be independent

sub-exponential random variables with zero-mean. Also, assume that K = maxi ‖Xi‖ψ1. Then, for

any vector a ∈ Rn and every t ≥ 0, we have:

P(|ΣiaiXi| ≥ t) ≤ 2 exp

(
−cmin

{
t2

K2‖a‖22
,

t

K‖a‖∞

})
.

where c > 0 is an absolute constant.

Lemma 5.16. (Bernstein-type inequality for symmetric random matrices). Consider a sequence

of symmetric and random independent identical distributed matrices {Si}mi=1 with dimension p× p.

Also, assume that ‖Si − ESi‖2 ≤ R for i = 1, . . . ,m. Then for all t ≥ 0,

P

(∥∥∥ 1

m

m∑
i=1

Si − ESi
∥∥∥

2
≥ t

)
≤ 2p exp

(
−mt2

σ +Rt/3

)
,

where σ = ‖E (S − ES)2 ‖2 and S is a independent copy of Si’s.
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5.6.2 Appendix B. Verification Of CU-RIP(ρ)

Before verifying CU-RIP, we need the following lemmas. In the first lemma, we show that

ȳ = 1
m

∑m
i=1 yi is concentrated around its mean with high probability.

Lemma 5.17 (Concentration of ȳ). Let A : Rp×p → Rm be a linear operator defined as (5.3)

and L ∈ Rp×p be some symmetric matrix. Then with probability at least 1 − ξ1, we have for some

constant C > 0:

| 1
m

1TA(L)− Tr(L)| ≤ C
√

1

m
log(

p

ξ1
)‖L‖2. (5.20)

Proof. In all the following expressions, cl > 0 for l = 1, . . . , 4 are absolute constants. We start by

noting that:

EA(L) = ETr(xixTi L) = Tr(L)

where we have used the fact that xi
i.i.d∼ N (0, I). We have for all t > 0:

P
(∣∣ 1

m
1TA(L)− Tr(L)

∣∣ ≥ t) = P

(∣∣∣ 1

m

m∑
i=1

〈xixTi , L〉 − Tr(L)
∣∣∣ ≥ t)

= P

(∣∣∣ 1

m

m∑
i=1

∑
u,v

(xui x
v
iL

uv)− Tr(L)
∣∣∣ ≥ t)

= P

∣∣∣∑
u

1

m

m∑
i=1

((xui )2Luu − Luu) +
∑
u6=v

1

m

m∑
i=1

(xui x
v
iL

uv)
∣∣∣ ≥ t

 .

(5.21)

Now we bound two probabilities. First, ∀ t1 ≥ 0:

P

(∣∣∣∑
u

1

m

m∑
i=1

((xui )2Luu − Luu)
∣∣∣ ≥ t1) a1

≤ p exp

(
−c1

mt21
‖L‖22

)
,

where a1 is due to the union bound over p diagonal variables and by the fact that (xui )2 is a χ2

random variable with mean 1 and ‖χ2‖ψ1 = 2; as a result, we can use the scalar version of Bernstein

inequality in (5.15). Now by choosing t1 ≥ c2‖L‖2

√
log( p

ξ′1
)

m , with probability at least 1 − ξ′1, we

have: ∣∣∣∑
u

1

m

m∑
i=1

((xui )2Luu − Luu)
∣∣∣ ≤√c2

m
log(

p

ξ′1
)‖L‖2. (5.22)
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Second, let k = maxu6=v(L
uv)2. Thus, ∀t2 ≥ 0,

P

∣∣∣∑
u6=v

1

m

m∑
i=1

(xui x
v
iL

uv)
∣∣∣ ≥ t2

 a2
≤ p2 exp

(
−c2

mt22
k2

)
,

where a2 holds by a union bound over p2−p off-diagonal variables, and the fact that xui x
v
i is a zero

mean subexponential random variable. Hence, we can again use the scalar version of Bernstein

inequality in (5.15). By choosing t2 ≥
√

c3
m log( p

ξ
′′
1

), with probability at least 1− ξ′′1 , we have:

∣∣∣∑
u6=v

1

m

m∑
i=1

(xui x
v
iL

uv)
∣∣∣ ≤√c3

m
log(

p

ξ
′′
1

). (5.23)

Now from (5.21), (5.22), and (5.23) and by choosing t = t1 + t2 with probability at least 1 − ξ1

where ξ1 = ξ
′
1 + ξ

′′
1 , we obtain:

P
(∣∣ 1

m
1TA(L)− Tr(L)

∣∣ ≥ t) ≤√c4

m
log(

p

ξ′1
)‖L‖2.

which proves the stated claim.

In the next lemma, we show that ∇F (M) = 1
mA

∗A(M) is concentrated around its mean (in

terms of spectral norm) with high probability.

Lemma 5.18 (Concentration of 1
mA

∗A(M)). Let M ∈ Rp×p be a fixed matrix with rank r and let

Si = xix
T
i (M)xix

T
i for i = 1, . . . ,m. Consider the linear operator A in model (5.3) independent of

M . Then with probability at least 1− ξ2, we have:

∥∥∥ 1

m

m∑
i=1

Si − ESi
∥∥∥

2
≤ C ′

√
pr2 log3 p

m
log(

p

ξ2
)‖M‖2. (5.24)

where C ′ > 0 is a constant.

Proof. In all the following expressions, Cl > 0 for l = 1, . . . , 11 are absolute constants. First we

note that by some calculations, one can show that

E
(

1

m
A∗A(M)

)
= ESi = 2(M) + Tr(M)I.

Our technique to establish the concentration of A∗A(Lt − L∗) is based on the matrix Bernstein

inequality. As stated in lemma (5.16), there should be a spectral bound on the summands,
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Si = xix
T
i (M)xix

T
i for i = 1, . . . ,m. Since the entries of ai are Gaussian, the spectral norm is

not absolutely bounded; hence, we cannot directly use the matrix Bernstein inequality. Inspired

by (Zhong et al., 2015), we will use a truncation trick to make sure that the spectral norm of

summands are bounded. Define the random variable x̃i
(j) as follows:

x̃i
(j) =


x

(j)
i , |x(j)

i | ≤ C1
√

logmp

0, otherwise,

(5.25)

where x
(j)
i is the jth entry of the random vector xi. By this definition, we immediately have the

following properties:

• P
(
x

(j)
i = x̃i

(j)
)
≥ 1− 1

(mp)C2
,

• E
(
x̃i

(j)x̃i
(k)
)

= 0, for j 6= k,

• Ex̃i(j) = 0 for j = 1, . . . , p,

• E
(
x̃i

(j)
)2
≤ E

(
x

(j)
i

)2
= 1, for j = 1, . . . , p,

Let S̃i = x̃ix̃i
TMx̃ix̃i

T for i = 1, . . . ,m. We need to bound parameters R and σ in the matrix

Bernstein inequality. Denote the SVD of M by M = UMΣV T
M . Since xi is a normal random vector,

it is rotationally invariant. As a result, w.l.o.g., we can assume that UM = [e1, e2, . . . , er] and

VM = [e1, e2, . . . , er] as long as the random vector xi is independent of M . Here, ej denotes the jth

canonical basis vector in Rp. To make sure this happens, we use m fresh samples of xi’s in each

iteration of the algorithm.

Now, we have for each i:

‖x̃ix̃iTMx̃ix̃i
T ‖2 = ‖x̃ix̃iTUMΣV T

M x̃ix̃i
T ‖2

≤ |x̃iTUMΣV T
M x̃i|‖x̃ix̃iT ‖2

≤ ‖UTM x̃i‖2‖V T
M x̃i‖2‖x̃i‖22‖M‖2

a1
≤ pr‖x̃i‖4∞‖M‖2
a2
≤ C3pr log2(mp)‖M‖2,
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above, a1 holds due to rotational invariance discussed above, and the relation between `2 and `∞

norms. Also, a2 is due to applying bound in (5.25). Now, we can calculate R:

‖S̃i − ES̃i‖2 ≤ ‖S̃i‖2 + E‖S̃i‖2 ≤ 2‖S̃i‖2 ≤ C4pr log2(mp)‖M‖2 = R,

where we have used both the triangle inequality and Jensen’s inequality in the first inequality

above. For σ, we define S̃ as the truncated version of S, independent copy of Si’s. Hence:

σ =
∥∥ES̃2 − (ES̃)2

∥∥
2

a1
≤ ‖ES̃2‖2 =

∥∥∥E (x̃x̃TMx̃x̃T x̃x̃TMx̃x̃T
) ∥∥∥

2

=
∥∥∥E(‖x̃‖22 (x̃TMx̃

)2
x̃x̃T

)∥∥∥
2

a1
≤ C5pr

2 log3(pm)‖M‖22
∥∥∥E (x̃x̃T ) ∥∥∥

2

a2
≤ C5pr

2 log3(pm)‖M‖22,

where a1 is followed as (ES̃)2 is a positive semidefinite matrix. In addition, a2 holds due to the

upper bound on
(
x̃TMx̃

)2 ‖x̃‖22:(
x̃TMx̃

)2 ‖x̃‖22 =
(
x̃TUMΣV T

M x̃
)2 ‖x̃‖22

≤ ‖UTM x̃‖22‖V T
M x̃‖22‖M‖22‖x̃‖22

≤ pr2‖x̃‖6∞‖M‖2

≤ C6pr
2 log3(mp)‖M‖2,

where we have again used the same argument of rotational invariance. Finally, a2 holds due to

the fact that E
(
x̃ix̃i

T
)
� I. Now, we can use the matrix Bernstein inequality for bounding∥∥∥ 1

m

∑m
i=1 S̃i − ES̃i

∥∥∥
2
:

P

(∥∥∥ 1

m

m∑
i=1

(S̃i − ES̃i)
∥∥∥

2
≥ t

)
≤ 2p exp

(
−mt2

σ +Rt/3

)
≤ 2p exp

(
−mt2

C5pr2 log3(pm)‖M‖22 + C4pr log2(mp)‖M‖2t/3

)
a1
≤ 2p exp

(
−mt2

C7pr2 log3(pm)‖M‖22

)
, (5.26)
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where a1 holds by choosing constant C7 to be sufficiently large. Now choose t ≥ ‖M‖2
√
C8

pr2 log3(pm)
m log( p

ξ′2
).

Thus with probability at least 1− ξ′2, we have:

∥∥∥ 1

m

m∑
i=1

(S̃i − ES̃i)
∥∥∥

2
≤

√
C8
pr2 log3(pm)

m
log(

p

ξ′2
)‖M‖2,

This bound shows that by taking m = O( 1
θ2
pr2 log3 p log( p

ξ′2
)) for some θ > 0, we can bound the

LHS of the above inequality. Actually, this choice of m determines the sample complexity of EP-

ROM and we will return back to this issue later. Recall that S̃i includes the truncated random

variables, i.e, S̃i = x̃ix̃i
TMx̃ix̃i

T . Also, P
(
x

(j)
i = x̃i

(j)
)
≥ 1− 1

(mp)C2
≥ 1− 1

(p)C9
. Hence, we need

to extend our result to the original xi. By definition of x̃i in (5.25) and choosing constant C9

sufficiently large (C9 > 1), we have P
(
‖Si − S̃i‖2 = 0

)
= P

(
‖xixTi − x̃ix̃i

T ‖2 = 0
)
≥ 1 − 1

(p)C10
.

Here we have used the union bound over p2 variables. Since we have m random matrices Si, we

need to take another union bound. As a result, with probability 1− ξ2 where ξ2 = 1
(p)C11

, we have:

∥∥∥ 1

m

m∑
i=1

(Si − ESi)
∥∥∥

2
≤

√
C8
pr2 log3 p

m
log(

p

ξ2
)‖M‖2. (5.27)

Proof of Theorem 5.7. Let Lt be the estimation of the algorithm in iteration t, and L∗ denotes the

ground truth matrix. Then for constants C,C ′C ′′ > 0,

∥∥Lt − L∗ − 1

2m
A∗A(Lt − L∗) + (

1

2m
1TA(Lt)−

1

2m
1TA(L∗))I

∥∥
2

a1
≤
∥∥ 1

2m
A∗A(Lt − L∗)− (Lt − L∗)−

1

2
Tr(Lt − L∗)I −

1

2m
1TA(Lt − L∗)I +

1

2
Tr(Lt − L∗)I

∥∥
2

a2
≤
∥∥ 1

2m
A∗A(Lt − L∗)− (Lt − L∗)−

1

2
Tr(Lt − L∗)I

∥∥
2

+
∥∥ 1

2m
1TA(Lt − L∗)I −

1

2
Tr(Lt − L∗)I

∥∥
2

a3
≤

C ′
√
pr2 log3 p

m
log(

p

ξ2
)

∥∥Lt − L∗∥∥2
+ C

√
1

m
log(

p

ξ1
)
∥∥Lt − L∗∥∥2

a4
≤ C ′′δ

∥∥Lt − L∗∥∥2
= ρ
∥∥Lt − L∗∥∥2

, (5.28)

where a1 is followed by adding and subtracting of Tr(Lt−L∗)I, inequality a2 follows from triangle

inequality, a3 holds with probability 1−ξ1−ξ2 = 1−ξ by invoking Lemma 5.17, and Lemma 5.18 (by
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fixed matrix Lt−L∗ with rank 2r), and finally a4 is followed by choosingm = O
(

1
δ2
pr2 log3 p log(pξ )

)
for some δ > 0. By choosing δ sufficiently small such that 0 < ρ < 1

2 , the proof is completed.

We also note that CU-RIP condition is also satisfied if we use the Frobenius norm instead of

the spectral norm (in deriving inequality (5.28)) by increasing m by a factor r. In other words,

∥∥Lt − L∗ − 1

2m
A∗A(Lt − L∗) + (

1

2m
1TA(Lt)−

1

2m
1TA(L∗))I

∥∥
F
≤ ρ′

∥∥Lt − L∗∥∥F
with probability at least 1− ξ provided that m = O

(
1
δ2
pr3 log3 p log(pξ )

)
. Here 0 < ρ′ < 1.

Corollary 5.19. From Theorem 5.7 we have the following conclusions:

1. Let U be the bases for the column space of fixed matrices L1 and L2 such that rank(Li) ≤ r for

i = 1, 2 and PU is the projection onto it. Also consider all the assumptions of Theorem 5.7.

Then ∥∥L1 − L2 −
1

2m
PUA∗A(L1 − L2) + PU

1

2
Tr(L1 − ȳ)I

∥∥
2
≤ ρ‖L1 − L2‖2.

2.
∥∥ 1

2mA
∗A(L1 − L2)− 1

2Tr(L1 − ȳ)I
∥∥

2
≥ (1− ρ)‖L1 − L2‖2.

Proof. The first result holds by the fact that L1 − L2 lies in subspace U . The second result is

directly follows from Theorem 5.7.

Proof of Theorem 5.6. The proof is very similar to the proof of Lemma 5.18 and we only give a

brief sketch. The idea is again to use the matrix Bernstein inequality; to do this, we have to use the

truncation trick both on the random vector xi and the noise vector e. We introduce x̃i as (5.25)

and similarly ẽ as follows (j = 1, . . . ,m):

ẽ(j) =


e(j), |e(j)| ≤ c′1

√
logm

0, otherwise,

(5.29)

In the following expressions, c′l > 0 for l = 1, 4 are absolute constants and c′l > 0 for l = 2, 3, 5, 6, 7

are some constants which depend on τ . Let Wi = ẽix̃ix̃i
T for i = 1, . . . ,m and W = ẽrx̃x̃

T be a

independent copy of Wi’s (i.e, ẽr and x̃ are independent copies of ei and xi, respectively). Hence,
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EA∗em = 1
m

∑m
i=1 Eẽix̃ix̃i

T = ESi = 0 and P(ẽi = ei) ≥ 1 − 1

mc
′
2

by assumptions on e. Now,

parameters R and σ in the matrix Bernstein inequality can be calculated as follows:

σ = ‖EWW T ‖2 =
∥∥∥Eẽr2E(‖x̃‖22x̃x̃T )

∥∥∥
2
≤ c′3p log(m) log(mp),

R = ‖ẽrx̃x̃T ‖2 ≤ c′4p
√

logm log(mp),

As a result, for all t3 ≥ 0, we have

P

(∥∥∥ 1

m

m∑
i=1

Wi

∥∥∥
2
≥ t3

)
≤ 2p exp

(
mt23

σ +Rt3/3

)
≤ 2p exp

(
mt23

c′5p log(m) log(mp)

)
,

where the last inequality holds by sufficiently large c′5. Now, similar to Lemma 5.18 by choosing

t3 ≥
√
c′6
p log2 p
m log( pξ3 ) and the union bound, we obtain with probability at least 1− ξ3:

∥∥∥ 1

m
A∗e

∥∥∥
2
≤

√
c′6
p log2 p

m
log(

p

ξ3
).

On the other hand, since ei’s are subgaussian random variables, by simple application of the

Hoeffding inequality (Vershynin, 2010), we have, with probability at least 1− ξ4:

| 1
m

1T e| ≤

√
c′7
m

log(
1

ξ4
)

Combining the above results together and letting γ = ξ3 + ξ4, we obtained the claim bound in the

theorem.

5.6.3 Appendix C. Running Time Analysis

Running time of EP-ROM. Each iteration of EP-ROM involves evaluation of the gradient at

current estimation and an exact projection on the set of rank r matrices. Recall that the unbiased

gradient of the objective function is given by:

∇F (Lt) + (
1

m
1TA(Lt)− ȳ)I =

1

m

m∑
i=1

(
xTi Ltxi − yi

)
xix

T
i + (

1

m
1TA(Lt)− ȳ)I.

The inner term
(
xTi Ltxi − yi

)
can be computed only once per iteration and stored in a tempo-

rary vector d ∈ Rm. Since in each iteration, we have access to the factors of Lt = UtV
T
t such
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Algorithm 5.4 MBK-SVD

Inputs: y, measurement operator, A = {x1x
T
1 , x2x

T
2 . . . , xmx

T
m}, rank r, block size b = r + 5,

ε ∈ (0, 1)

Outputs: matrix Z ∈ Rp×r

1: Set q = Θ( log p√
ε

) and G ∼ N (0, 1)p×b

2: Calculate ȳ = 1
m

∑m
i=1 yi and d = xTi Ltxi − yi

3: Allocate Krylov subspace, Kr ∈ Rp×q.
4: I ← B(A, G, d, ȳ), G← I, Kr[:, 1 : b]← I

for i = 2 : q do

I ← B(A, G, d, ȳ)

J ← B(A, I, d, ȳ)

Kr[:, (i− 1)b+ 1 : ib]← J

G← J

end for

5: Orthonormalize the columns of Kr to find Q ∈ Rp×qb.
6: Compute M ← B(A, Q, d, ȳ), M ←MT

7: Compute top r singular vectors of M and call it Uk.

Return: Z = QUk

that Ut, Vt ∈ Rp×r, the calculation of d takes O(pr) operations. Then we can calculate dxix
T
i in

O(p2) operations. In addition, computing unbiasing term, ( 1
m1TA(Lt) − ȳ)I, takes O(m) opera-

tions. As a result, calculating the whole unbiased gradient takes O(mp2) times which simplifies to

O(p3r2 log4(p) log(1
ε )) due to the choice of m. On the other hand, exact projection on the set of

rank r matrices takes O(p3) time, since the SVD of even a rank-1 p × p matrix (without spectral

assumptions) needs O(p3) operations. As a result, the total running time for EP-ROM to achieve

ε accuracy is given by K = O(p3r2 log4(p) log2(1
ε )) due to the linear convergence of EP-ROM.

We note that even if we use the Lanczos method for the projection step, the required running

time equals Õ( p2r√
δ−1

) where δ denotes the gap between the rth and (r+ 1)th largest singular values.

Hence, the gradient calculation is the computationally dominating step and the total running time

is as before.

Running time of AP-ROM. As discussed before, we use MBK-SVD as head approximate

projection in AP-ROM. The pseudocode for MBK-SVD is given in Algorithm 5.4.
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Algorithm 5.5 Operator B(A, G, d, ȳ)

Inputs: A, G, d, ȳ
Outputs: W3 =

(
1

2m

∑m
i=1 dixix

T
i − 1

2m(1Td)I
)
G

for j = 1 : m do

W1 ← xTj G

W2 ← d(i)xjW1

W3 ←W2 − djG
end for

Return: W3 ← 1
2mW3

In Algorithm 5.4, Kr denotes a Krylov subspace, and the parameter b determines the size of

each block inside Kr which can be any value greater than r. Also, ε represents the desired accuracy

in calculating of the projection.

Now let ∆ = 1
2m

∑m
i=1

(
xTi Ltxi − yi

)
xix

T
i − 1

2m(1Td)I. In MBK-SVD, the computation of

vector d takes O(pr) operations as before. In addition, instead of multiplying unbiased gradient by

a random matrix, each sensing vector, xi is multiplied by a matrix G which needs O(pr) operations.

To be more precise, the Krylov subspace is formed by q iterations. Each iteration needs to compute

the product of (∆2)k.∆.G for k = 0, . . . , q and this is done through operator B. The code for this

operator is given in Algorithm 5.5. To run this algorithm, we need O(mpr) operations; there are

m iterations and each of them takes m = Õ(pr2 log(1
ε )) time (Õ hides dependency on polylog(p)).

As a result, MBK-SVD requires O(qmpr) operations which implies that the total running time of

MBK-SVD is scaled as O
(
p2r4 log4(p) log(1

ε )
log(p)√

ε

)
by the choice of m and q.

Proof of Theorem 5.11. As we discussed before, AP-ROM uses two tail and head approximate

projections. For implementing the head approximation step, we use MBK-SVD with rank set to

2r to obtain the approximation of right singular vectors. Let UH be the returned 2r-dimensional

subspace by MBK-SVD. Now we have to form UtV
T
t −UHUTH∆ which is a matrix with rank at most

3r. Here, Ut, Vt are factors of Lt. To efficiently compute this expression, we again use operator B

by calculating UTH∆ = (B(A, UH, d, ȳ))T in O(pr) operations. Now to apply the approximate tail

projection, we can use either the Lanczos algorithm (SVDs) or ordinary BK-SVD, both of which

require O(p2r) operations. After calculating the r-dimensional subspace returned by tail operator,
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UT , we can project UtV
T
t − UHUTH∆ onto it which needs another O(p2r) operations. As a result,

the total running time for AP-ROM to achieve ε accuracy is scaled as K = O
(
p2r4 log5(p) log2(1

ε )
)

due to the linear convergence of AP-ROM.

Proof of Theorem 5.13. Let V t, V t+1, and V ∗ denote the bases for the column space of Lt, Lt+1,

and L∗, respectively. Assume ν = 1 + 2√
1−ε
√
κ−1

. Also, let V t ∪ V t+1 ∪ V ∗ ⊆ Ωt := Ω. Hence,

Ωt is the set of matrices with rank ≤ 2κr + r∗. Define b = Lt − ηPΩ∂F (Lt), α = α2κr+r∗ , and

β = β2κr+r∗ . Thus:

‖Lt+1 − L∗‖2F
a1
≤ ν‖b− L∗‖2F = ν‖Lt − L∗ − ηtPΩ∂F (Lt)‖2F

= ν‖Lt − L∗‖2F − 2ηtν〈Lt − L∗,PΩ
1

m
B∗sgn(B(Lt)− y)〉+ νη2

t ‖PΩ∂F (Lt)‖2F

= ν‖Lt − L∗‖2F − 2
ηtν

m
〈B(Lt − L∗), sgn(B(Lt − L∗))〉+ νη2

t ‖PΩ∂F (Lt)‖2F

= ν‖Lt − L∗‖2F − 2
ηtν

m
‖B(Lt − L∗)‖1 + νη2

t ‖PΩ∂F (Lt)‖2F ,

where a1 holds by applying lemma 5.12, and due to the fact that Lt+1 is the best low-rank approx-

imation to b, it also happens to be the best low-rank approximation to b. Now we can bound the

third term, ‖PΩ∂F (Lt)‖2F as follows:

‖PΩ∂F (Lt)‖2F =
1

m
‖PΩB∗sgn(B(Lt)− y)‖2F =

1

m
〈PΩB∗sgn(B(Lt)− y),PΩB∗sgn(B(Lt)− y)〉

=
1

m
〈sgn(B(Lt)− y),BPΩB∗sgn(B(Lt)− y)〉

a1
≤ 1

m
‖BPΩB∗sgn(B(Lt)− y)‖1

a2
≤ β‖PΩ∂F (Lt)‖F ,

where a1 holds by Hölder’s inequality, and a2 is due to applying RIP(`1, `2) property. Hence, we

obtain, ‖PΩ∂F (Lt)‖F ≤ β. Now we have the error bound as ‖Lt+1 − L∗‖2F ≤ ν‖Lt − L∗‖2F −

2ηtνm ‖B(Lt − L∗)‖1 + νη2β2, Now let ηt = ‖B(Lt−L∗)‖1
β2 . By using the RIP(`1, `2) property, we have

‖Lt+1 − L∗‖2F ≤ ν(1− α2

β2
)‖Lt − L∗‖2F . (5.30)

In order to have linear convergence, we need to have
√
ν(1− α2

β2 ) < 1. If we simplify this condition

together with the condition on κ, stated in Lemma 5.12, we obtain: κ > 1+max
{4
(

(α
2

β2
)−1

)2
1−ε , 1

1−ε

}
.

This completes the proof.
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CHAPTER 6. FUTURE DIRECTIONS

In this chapter, we provide some possible future directions based on the previous results. In

general, we will consider four different directions as follows:

1. Extending the nonlinear demixing problem to more complex models such as the superposition

of low-rank and sparse matrices

2. Analyzing nonlinear regression problem with other link functions such as general periodic and

noninvertible functions

3. Justifying theoretically the success of the GAN approach introduced in chapter 3 in the

demixing problem

4. Extending our initial result in the two-layer neural network for more general cases

Regarding the first direction, we are working on the problem where the constituent signals have

a more complex structure such as the mixture of low-rank and sparse matrices. Specifically, we

want to know if a non-convex algorithm can be proposed for demixing of the constituent signals,

and how efficient this algorithm is in terms of sample complexity, time complexity, and convergence

rate.

Regarding the second direction, we want to know what happens if the link function is a general

periodic function. For instance, what if the link function is modeled as a universal quantization

function, or even some aperiodic yet non-invertible one. Can we still propose an algorithm to

recover the underlying signal? If so, how efficient is this algorithm? And what are its statistical

and computational limitations?

Regarding the third direction, since our GAN approach is based on the empirical observation,

the natural question comes to mind is that if we can justify it mathematically? For instance, we

know from chapter 1 and 2, having incoherent constituent components are crucial for the success
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of demixing problem. How can the proposed GAN approach encode the incoherence notion?, or

under what condition(s), this approach is unable to learn the structure of the components? Other

important questions here are related to the convergence analysis of the denoising and demixing

optimization problems introduced in problems 3.3 and 3.4, respectively. Finally, can we learn some

other models such as the low-rank and sparsity structures using the proposed GAN approach?

Regarding the fourth direction, there are many research challenges which we can address. For

instance, if we still focus on the shallow network with two layers and with quadratic activation

function, but use another loss function such as cross-entropy (negative likelihood) function, can we

still use our proposed algorithms or similar ones for learning the weights of the network? What

if we change the activation function to Relu which has practical importance. In this case, can

we propose a new algorithm for training the network? Another possible extension is about going

to more deeper networks either by quadratic, or other types of activation functions. In this case,

providing efficient algorithms for training the network, or estimating the weights of the net is a

challenging research question.

The above works are some of the possible future directions which I am working on, and my goal

is to address all or part of them as my future work.
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